scholarly journals Batch Transfer Printing of Small-Size Silicon Nano-Films with Flat Stamp

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1255
Author(s):  
Wenping Cao ◽  
Guochang Liu ◽  
Jinwei Miao ◽  
Guojun Zhang ◽  
Jiangong Cui ◽  
...  

Silicon nano-film is essential for the rapidly developing fields of nanoscience and flexible electronics, due to its compatibility with the CMOS process. Viscoelastic PDMS material can adhere to Si, SiO2, and other materials via intermolecular force and play a key role in flexible electronic devices. Researchers have studied many methods of transfer printing silicon nano-films based on PDMS stamps with pyramid microstructures. However, only large-scale transfer printing processes of silicon nano-films with line widths above 20 μm have been reported, mainly because the distribution of pyramid microstructures proposes a request on the size of silicon nano-films. In this paper, The PDMS base to the curing agent ratio affects the adhesion to silicon and enables the transfer, without the need for secondary alignment photolithography, and a flat stamp has been used during the transfer printing, with no requirement for the attaching pressure and detaching speed. Transfer printing of 20 μm wide structures has been realized, while the success rate is 99.3%. The progress is promising in the development of miniature flexible sensors, especially flexible hydrophone.

Author(s):  
Ashante’ Allen ◽  
Andrew Cannon ◽  
William King ◽  
Samuel Graham

The development of processing methods for flexible electronic devices is seen as an enabling technology for the creation of a new array of semiconductor products. These devices have the potential be low cost, disposable, and can be applied to deformable or non-planar surfaces. While much effort has been put into the development of amorphous silicon and organic semiconductor technology for flexible devices, semiconductor nanomaterials are of interest due to their inherently flexibility, high transport mobilities, and their unique optoelectronic and piezoelectric properties. However, the synthesis of these materials directly onto polymer substrates is not feasible due to the high temperatures or harsh chemical environments under which they are synthesized. This challenge has limited the development of flexible electronics with semiconductor nanomaterial building blocks. A number of techniques which address the manufacturing concerns include solution based processing [1,2] as well as dry transfer techniques [3–5]. In general, dry transfer printing methods carry advantages over solution based processing as the need to address substrate-fluid compatibility is mitigated.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 813
Author(s):  
Ziying Wang ◽  
Zongtao Ma ◽  
Jingyao Sun ◽  
Yuhua Yan ◽  
Miaomiao Bu ◽  
...  

In order to replace nonrenewable resources and decrease electronic waste disposal, there is a rapidly rising demand for the utilization of reproducible and degradable biopolymers in flexible electronics. Natural biopolymers have many remarkable characteristics, including light weight, excellent mechanical properties, biocompatibility, non-toxicity, low cost, etc. Thanks to these superior merits, natural functional biopolymers can be designed and optimized for the development of high-performance flexible electronic devices. Herein, we provide an insightful overview of the unique structures, properties and applications of biopolymers for electronic skins (e-skins) and flexible strain sensors. The relationships between properties and sensing performances of biopolymers-based sensors are also investigated. The functional design strategies and fabrication technologies for biopolymers-based flexible sensors are proposed. Furthermore, the research progresses of biopolymers-based sensors with various functions are described in detail. Finally, we provide some useful viewpoints and future prospects of developing biopolymers-based flexible sensors.


2021 ◽  
Author(s):  
Cong Wang ◽  
Zehao Song ◽  
Pei Shi ◽  
Lin Lv ◽  
Houzhao Wan ◽  
...  

With the rapid development of portable electronic devices, electric vehicles and large-scale grid energy storage devices, it needs to reinforce specific energy and specific power of related electrochemical devices meeting...


2014 ◽  
Vol 904 ◽  
pp. 121-125 ◽  
Author(s):  
Ji Lan Fu ◽  
Ya Ling Li ◽  
Li Xin Mo ◽  
Yu Wang ◽  
Jun Ran ◽  
...  

The recent dramatic progress in the printed electronics and flexible electronics, due to the universality of the substrates including the foldable and stretchable substrates, has opened a new prospect in the field of future electronics. In this paper, silver nanospheres in large-scale are synthesized, the nanosilver ink with 63.88% silver content are prepared and a new type of highly conductive and far identify distance RFID tags are manufactured. Especially there are no resin and other additives containing in our conductive ink which satisfy the rheological characteristics and process of screen printing. The tags exhibit the best radiation performance own to there is no high temperature sintering in need. The surface resistance of the tags could be 80 mΩ/, and the identify distance reach to 6.0m. Keywords:silver nanoparticles, conductive ink, RFID tags


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 960
Author(s):  
Mira Naftaly ◽  
Satyajit Das ◽  
John Gallop ◽  
Kewen Pan ◽  
Feras Alkhalil ◽  
...  

Conductive thin films are an essential component of many electronic devices. Measuring their conductivity accurately is necessary for quality control and process monitoring. We compare conductivity measurements on films for flexible electronics using three different techniques: four-point probe, microwave resonator and terahertz time-domain spectroscopy. Multiple samples were examined, facilitating the comparison of the three techniques. Sheet resistance values at DC, microwave and terahertz frequencies were obtained and were found to be in close agreement.


Author(s):  
Shaoji Wu ◽  
Li Tang ◽  
Yue Xu ◽  
Guangcong Tang ◽  
Bailin Dai ◽  
...  

At present, hydrogel flexible sensors have attracted wide attention in the field of wearable electronic devices. However, hydrogel flexible sensors need external solid state power supply to output stable signals....


Sign in / Sign up

Export Citation Format

Share Document