scholarly journals Fabrication of Antireflection Micro/Nanostructures on the Surface of Aluminum Alloy by Femtosecond Laser

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1406
Author(s):  
Mengdan Du ◽  
Quanquan Sun ◽  
Wei Jiao ◽  
Lifeng Shen ◽  
Xiao Chen ◽  
...  

Designed micro-nano structures on the surface of aluminum alloy provide excellent light trapping properties that can be used extensively in thermal photovoltaics, sensors, etc. However, the fabrication of high-performance antireflective micro-nano structures on aluminum alloy is challenging because aluminum has shallow intrinsic losses and weak absorption. A two-step strategy is proposed for fabricating broadband antireflection structures by superimposing nanostructures onto microscale structures. By optimizing the processing parameters of femtosecond laser, the average reflectances of 2.6% within the visible spectral region (400–800 nm) and 5.14% within the Vis-NIR spectral region (400–2500 nm) are obtained.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1975 ◽  
Author(s):  
Chongyang Zhao ◽  
Xiaobo Wang ◽  
Bo Zhao ◽  
Feng Jiao

The high performance of parts is determined by the microstructure of the machined surface to some extent. Different processing methods have been used to construct different microstructures on machined surfaces; the effective improvement of the serviceability of parts has been the focus of research in the field of precision and ultra-precision machining. In the presented work, a microscratch was formed on the machined surface in ultrasonic assisted machining, and the surface microstructure of high-performance aluminum alloy processed by single-excitation rotational longitudinal–torsional coupled ultrasonic vibration (LTCUV) milling was investigated. First, the motion paths model of the cutting edge in the LTCUV milling were established; then, the single-excitation LTCUV milling system has been set up, and the acoustic performance of the LTCUV system was examined. The surface microstructure of aluminum alloy was processed by different machining techniques, and the effect of processing parameters on the surface microstructure and performance were investigated by the orthogonal design of experiment (DOE). The surface roughness was found to be proportional to the ultrasonic cutting speed and feeding rate. The surface roughness was mainly controlled by the ultrasonic amplitude, and the optimal surface quality corresponded to the ultrasonic amplitude of 4 μm. The cutting speed contributes greatly to the surface roughness. The water contact angle of surfaces obtained by ultrasonic processing was larger than that of surfaces achieved by the conventional processing, while the surface water contact angle was negatively related to the ultrasonic amplitude. Once the rotation speed exceeded a critical level, the ultrasonic amplitude exerted a negligible effect on the surface water contact angle. The cutting speed contributes the most to the water contact angle. The friction coefficients of surfaces treated by ultrasonic processing were lower than those obtained by conventional processing at constant processing parameters, while the friction coefficient was minimized at the ultrasonic amplitude of 4 μm. In the case of grease lubrication friction, the surface wear decreased with the ultrasonic amplitude, indicating the improved wear resistance of the processed surfaces. Similarly, the ultrasonic amplitude has the highest contribution rate to friction and wear.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1573
Author(s):  
Dongshi Zhang ◽  
Bikas Ranjan ◽  
Takuo Tanaka ◽  
Koji Sugioka

In this work, we present the possibility of producing multiscale hierarchical micro/nanostructures by the femtosecond laser ablation of transition metals (i.e., Ta and W) in water and investigate their polarization-dependent reflectance. The hierarchical micro/nanostructures are composed of microscale-grooved, mountain-like and pit-rich structures decorated with hybrid laser-induced periodic surface structures (LIPSSs). The hybrid LIPSSs consist of low/high and ultrahigh spatial frequency LIPSSs (LSFLs/HSFLs and UHSFLs). LSFLs/HSFLs of 400–600 nm in a period are typically oriented perpendicular to the direction of the laser polarization, while UHSFLs (widths: 10–20 nm and periods: 30–50 nm) are oriented perpendicular to the curvatures of LSFLs/HSFLs. On the microstructures with height gradients, the orientations of LSFLs/HSFLs are misaligned by 18°. On the ablated W metasurface, two kinds of UHSFLs are observed. UHSFLs become parallel nanowires in the deep troughs of LSFLs/HSFLs but result in being very chaotic in shallow LSFLs, turning into polygonal nanonetworks. In contrast, chaotic USFLs are not found on the ablated Ta metasurfaces. With the help of Fourier transform infrared spectroscopy, it is found that microgrooves show an obvious polarization-dependent reflectance at wavelengths of 15 and 17.5 μm associated with the direction of the groove, and the integration of microstructures with LSFs/HSFLs/UHSFLs is thus beneficial for enhancing the light absorbance and light trapping in the near-to-mid-infrared (NIR-MIR) range.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 236
Author(s):  
Rui Lou ◽  
Guangying Li ◽  
Xu Wang ◽  
Wenfu Zhang ◽  
Yishan Wang ◽  
...  

Antireflection and superhydrophilicity performance are desirable for improving the properties of electronic devices. Here, we experimentally provide a strategy of femtosecond laser preparation to create micro-nanostructures on the graphite surface in an air environment. The modified graphite surface is covered with abundant micro-nano structures, and its average reflectance is measured to be 2.7% in the ultraviolet, visible and near-infrared regions (250 to 2250 nm). The wettability transformation of the surface from hydrophilicity to superhydrophilicity is realized. Besides, graphene oxide (GO) and graphene are proved to be formed on the sample surface. This micro-nanostructuring method, which demonstrates features of high efficiency, high controllability, and hazardous substances zero discharge, exhibits the application for functional surface.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 267
Author(s):  
Minyu Bai ◽  
Zhuoman Wang ◽  
Jijie Zhao ◽  
Shuai Wen ◽  
Peiru Zhang ◽  
...  

Weak absorption remains a vital factor that limits the application of two-dimensional (2D) materials due to the atomic thickness of those materials. In this work, a direct chemical vapor deposition (CVD) process was applied to achieve 2D MoS2 encapsulation onto the silicon nanopillar array substrate (NPAS). Single-layer 2D MoS2 monocrystal sheets were obtained, and the percentage of the encapsulated surface of NPAS was up to 80%. The reflection and transmittance of incident light of our 2D MoS2-encapsulated silicon substrate within visible to shortwave infrared were significantly reduced compared with the counterpart planar silicon substrate, leading to effective light trapping in NPAS. The proposed method provides a method of conformal deposition upon NPAS that combines the advantages of both 2D MoS2 and its substrate. Furthermore, the method is feasible and low-cost, providing a promising process for high-performance optoelectronic device development.


2016 ◽  
Vol 109 (21) ◽  
pp. 211902 ◽  
Author(s):  
E. I. Ageev ◽  
V. Yu. Bychenkov ◽  
A. A. Ionin ◽  
S. I. Kudryashov ◽  
A. A. Petrov ◽  
...  

2021 ◽  
Vol 1047 ◽  
pp. 62-67
Author(s):  
Shen Wang ◽  
Le Tong ◽  
Guang Jun Chen ◽  
Mao Xun Wang ◽  
Bin Dai ◽  
...  

7075 aluminum alloy is widely used due to its great performance, especially in aerospace area. In this paper, ultrasonic-assisted grinding technology is used to process 7075 aluminum alloy. The data is obtained through experiments, and the surface roughness and morphology of ultrasonic assisted grinding and conventional grinding under different spindle speeds, feed rates, and amplitudes are analyzed. Research has found that the increase in spindle speed and amplitude will improve the quality of the machined surface and reduce the surface roughness by 82.1% and 36%. However, with the increase of feed rate, the surface quality decreased significantly, and the surface roughness increased by 55.6%. The surface micro-morphology of the machined workpiece is observed, and the effects of different processing parameters on the surface micro-morphology are obtained.


2022 ◽  
Vol 327 ◽  
pp. 263-271
Author(s):  
Gan Li ◽  
Jin Kang Peng ◽  
En Jie Dong ◽  
Juan Chen ◽  
Hong Xing Lu ◽  
...  

There is a strong demand for high-strength aluminum alloys such as 7075 aluminum alloy to be applied for rheocasting industry. The overriding challenge for the application of 7075 alloy is that its solid fraction is very sensitive to the variation of temperature in the range of 40% ~ 50% solid fraction, which inevitably narrows down the processing window of slurry preparation for rheocasting process. Therefore, in this work, a novel method to prepare semi-solid slurry of the 7075 alloy, so called Enthalpy Control Process (ECP), has been developed to grapple with this issue. In the method, a medium-frequency electromagnetic field was applied on the outside of slurry preparation crucible to reduce the temperature difference throughout the slurry. The effect of processing parameters, including heating power, heating time, the initial temperature of crucible and melt weight, on the temperature field of the semi-solid slurry was investigated. The results exhibited that although the all the processing parameters had a great influence on the average temperature of the slurry, heating time was the main factor affecting the maximum temperature difference of the slurry. The optimum processing parameters during ECP were found to be heating power of 7.5 KW, the initial temperature of crucible of 30 °C ~ 200 °C and melt weight of 2 kg.


Author(s):  
Huilong Ren ◽  
Yifu Liu ◽  
Chenfeng Li ◽  
Xin Zhang ◽  
Zhaonian Wu

There is an increasing interest in the lightweight design of ship and offshore structures, more specifically, choosing aluminum alloys or other lightweight high-performance materials to build structure components and ship equipments. Due to its better mechanical properties and easy assembly nature, extruded aluminum alloy stiffened plates are widely used in hull structures. When the load on the hull reaches a certain level during sailing, partial or overall instability of stiffened plate makes significant contribution in an event of collapse of the hull structure. It is very necessary to investigate the ultimate strength of aluminum alloy stiffened plate to ensure the ultimate bearing capacity of large aluminum alloy hull structure. Most of studies of the ultimate strength of stiffened plates deal with stiffened plates with T–shaped stiffeners. Stiffeners of other shapes have seldom been explored. In this research, the ultimate strength of six different cross–section aluminum alloy stiffened plates and one steel stiffened plate was studied based on the non–linear finite element analysis (FEA). Taking into account stiffness, weight and other issues, the new cross–section aluminum stiffener has finally been concluded for replacing the original steel stiffener in upper deck of a warship.


Sign in / Sign up

Export Citation Format

Share Document