scholarly journals Combination of Ceramic Laser Micromachining and Printed Technology as a Way for Rapid Prototyping Semiconductor Gas Sensors

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1440
Author(s):  
Nikolay Samotaev ◽  
Konstantin Oblov ◽  
Pavel Dzhumaev ◽  
Marco Fritsch ◽  
Sindy Mosch ◽  
...  

The work describes a fast and flexible micro/nano fabrication and manufacturing method for ceramic Micro-electromechanical systems (MEMS)sensors. Rapid prototyping techniques are demonstrated for metal oxide sensor fabrication in the form of a complete MEMS device, which could be used as a compact miniaturized surface mount devices package. Ceramic MEMS were fabricated by the laser micromilling of already pre-sintered monolithic materials. It has been demonstrated that it is possible to deposit metallization and sensor films by thick-film and thin-film methods on the manufactured ceramic product. The results of functional tests of such manufactured sensors are presented, demonstrating their full suitability for gas sensing application and indicating that the obtained parameters are at a level comparable to those of industrial produced sensors. Results of design and optimization principles of applied methods for micro- and nanosystems are discussed with regard to future, wider application in semiconductor gas sensors prototyping.

2013 ◽  
Vol 431 ◽  
pp. 306-311
Author(s):  
Xiang Tao Ran ◽  
Zhi Wang ◽  
Li Yang

With the increasing needs for high-performance gas sensors in industrial production, environmental monitoring and so on, the research on gas sensors is becoming more and more important. In this paper, the electric field intensity distribution simulation process of the interdigital microelectrodes (IMEs) is discussed in details to get the proper electrode structural parameters. The IMEs on the ITO surface with a minimum gap of about 4μm are achieved by lithography, which provides a reliable, low-cost manufacturing method. Sensitive components are made of the multi-walled carbon nanotubes modified materials. The gas-sensing property of the sensor is detected for ammonia. The experiment result shows that the performance of the nanomodified sensor is obviously improved.


1997 ◽  
Vol 501 ◽  
Author(s):  
G. S. V. Coles ◽  
G. Williams

ABSTRACTSensors and Transducers, and in the specific context of this paper gas sensors, are currently amongst the largest growth areas in the modem electronics industry and this seems likely to continue for the foreseeable future. Nanocrystalline materials posses many properties that could make them ideal as potential gas sensing elements with many advantages over their microcrystalline counterparts. Most importantly these include increased surface area coupled with reduced sintering temperatures and times. However, it should also be noted that there are several disadvantages including the comparatively high cost of materials and increased electrical resistance.This paper reviews the operating mechanisms of semiconductor gas sensors and the possible advantages of using nano sized powders to produce gas sensitive devices. Results are presented which have been obtained from several materials produced by laser evaporation including alumina (Al2O3), zirconia (ZrO2), and tin dioxide (SnO2) in contaminated atmospheres incorporating carbon monoxide, hydrogen and methane.


Author(s):  
Jun-Sik Kim ◽  
Ki Beom Kim ◽  
Huayao Li ◽  
Chan Woong Na ◽  
Kyeorei Lim ◽  
...  

Water poisoning has been a long-standing problem in oxide semiconductor gas sensors. Herein, for the first time, we report that pure and Pr-doped Ce4W9O33 provide humidity-independent gas sensing characteristics. The...


Proceedings ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Kengo Shimanoe ◽  
Takaharu Mizukami ◽  
Koichi Suematsu ◽  
Ken Watanabe

Water vapor is the most important factor to influence on gas sensing properties. […]


2008 ◽  
Vol 47-50 ◽  
pp. 1502-1505
Author(s):  
Kouichi Suematsu ◽  
Takanori Honda ◽  
Masayoshi Yuasa ◽  
Tetsuya Kida ◽  
Kengo Shimanoe ◽  
...  

Recently, we have proposed some theoretical models, power laws and effect of particle shape and size, for semiconductor gas sensors. The models show that a depletion theory of semiconductor can be combined with the dynamics of adsorption and/or reactions of gases on the surface. In the case of SnO2, the relative resistance (R/R0) is proportional to PO 2 n, where n is a constant value (n=1/2) on oxygen partial pressure. In addition, carrier concentration in SnO2 influences depth of the depletion. In this study, to experimentally reveal such effects, we tried to control the carrier concentration in SnO2 by foreign doping and examined their electrical resistance and sensor response. Correlations between doping concentration, crystalline size, and partial pressures of oxygen and H2 on the electric resistance are discussed to reveal the material design for semiconductor gas sensors.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zongtao Ma ◽  
Ziying Wang ◽  
Lingxiao Gao

In recent years, gas sensing electronic devices have always attracted wide attention in the field of environment, industry, aviation and others. In order to improve the gas sensing properties, many micro- and nano-fabrication technologies have been proposed and investigated to develop high-performance gas sensing devices. It is worth noting that light irradiation is an effective strategy to enhance gas sensitivity, shorten the response and recovery time, reduce operating temperature. In this review, firstly, the latest research advances of gas sensors based on different micro-nanostructure materials under UV light and visible light activation is introduced. Then, the gas sensing mechanism of light-assisted gas sensor is discussed in detail. Finally, this review describes the present application of gas sensors with improved properties under light activation assisted conditions and the perspective of their applications.


Sensors ◽  
2017 ◽  
Vol 17 (8) ◽  
pp. 1852 ◽  
Author(s):  
Jianqiao Liu ◽  
Yinglin Gao ◽  
Xu Wu ◽  
Guohua Jin ◽  
Zhaoxia Zhai ◽  
...  

2020 ◽  
Vol 98 (12) ◽  
pp. 67-73
Author(s):  
Taro Ueda ◽  
Hiroto Fukuura ◽  
Kai Kamada ◽  
Takeo Hyodo ◽  
Yasuhiro Shimizu

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jingyao Liu ◽  
Zhixiang Hu ◽  
Yuzhu Zhang ◽  
Hua-Yao Li ◽  
Naibo Gao ◽  
...  

AbstractThe Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network. While semiconductor gas sensors have many advantages such as excellent sensitivity and low cost, their application is limited by their high operating temperature. Two-dimensional (2D) layered materials, typically molybdenum disulfide (MoS2) nanosheets, are emerging as promising gas-sensing materials candidates owing to their abundant edge sites and high in-plane carrier mobility. This work aims to overcome the sluggish and weak response as well as incomplete recovery of MoS2 gas sensors at room temperature by sensitizing MoS2 nanosheets with PbS quantum dots (QDs). The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules. The sensitized MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature, and the limit of NO2 detection was estimated to be 94 ppb. The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance, offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.


2020 ◽  
Vol MA2020-02 (66) ◽  
pp. 3336-3336
Author(s):  
Taro Ueda ◽  
Hiroto Fukuura ◽  
Kai Kamada ◽  
Takeo Hyodo ◽  
Yasuhiro Shimizu

Sign in / Sign up

Export Citation Format

Share Document