scholarly journals Biodiesel-Derived Glycerol Obtained from Renewable Biomass—A Suitable Substrate for the Growth of Candida zeylanoides Yeast Strain ATCC 20367

2019 ◽  
Vol 7 (8) ◽  
pp. 265 ◽  
Author(s):  
Laura Mitrea ◽  
Floricuța Ranga ◽  
Florinela Fetea ◽  
Francisc Vasile Dulf ◽  
Alexandru Rusu ◽  
...  

Used kitchen oil represents a feasible and renewable biomass to produce green biofuels such as biodiesel. Biodiesel production generates large amounts of by-products such as the crude glycerol fraction, which can be further used biotechnologically as a valuable nutrient for many microorganisms. In this study, we transesterified used kitchen oil with methanol and sodium hydroxide in order to obtain biodiesel and crude glycerol fractions. The crude glycerol fraction consisting of 30% glycerol was integrated into a bioreactor cultivation process as a nutrient source for the growth of Candida zeylanoides ATCC 20367. Cell viability and biomass production were similar to those obtained with batch cultivations on pure glycerol or glucose as the main nutrient substrates. However, the biosynthesis of organic acids (e.g., citric and succinic) was significantly different compared to pure glycerol and glucose used as main carbon sources.


Archaea ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Carmen Hermann-Krauss ◽  
Martin Koller ◽  
Alexander Muhr ◽  
Hubert Fasl ◽  
Franz Stelzer ◽  
...  

The archaeonHaloferax mediterraneiwas selected for production of PHA co- and terpolyesters using inexpensive crude glycerol phase (CGP) from biodiesel production as carbon source. CGP was assessed by comparison with the application of pure glycerol. Applying pure glycerol, a copolyester with a molar fraction of 3-hydroxybutyrate (3HB) of 0.90 mol/mol and 3-hydroxyvalerate (3HV) of 0.10 mol/mol, was produced at a volumetric productivity of 0.12 g/Lh and an intracellular PHA content of 75.4 wt.-% in the sum of biomass protein plus PHA. Application of CGP resulted in the same polyester composition and volumetric productivity, indicating the feasibility of applying CGP as feedstock. Analysis of molar mass distribution revealed a weight average molar massMwof 150 kDa and polydispersityPiof 2.1 for pure glycerol and 253 kDa and 2.7 for CGP, respectively; melting temperatures ranged between 130 and 140°C in both setups. Supplyingγ-butyrolactone as 4-hydroxybutyrate (4HB) precursor resulted in a poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate-co-4-hydroxybutyrate] (PHBHV4HB) terpolyester containing 3HV (0.12 mol/mol) and 4HB (0.05 mol/mol) in the poly[(R)-3-hydroxybutyrate] (PHB) matrix; in addition, this process runs without sterilization of the bioreactor. The terpolyester displayed reduced melting (melting endotherms at 122 and 137°C) and glass transition temperature (2.5°C), increased molar mass (391 kDa), and a polydispersity similar to the copolyesters.



2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Nina Kolesárová ◽  
Miroslav Hutňan ◽  
Igor Bodík ◽  
Viera Špalková

This contribution reviews the possibility of using the by-products from biodiesel production as substrates for anaerobic digestion and production of biogas. The process of biodiesel production is predominantly carried out by catalyzed transesterification. Besides desired methylesters, this reaction provides also few other products, including crude glycerol, oil-pressed cakes, and washing water. Crude glycerol or g-phase is heavier separate liquid phase, composed mainly by glycerol. A couple of studies have demonstrated the possibility of biogas production, using g-phase as a single substrate, and it has also shown a great potential as a cosubstrate by anaerobic treatment of different types of organic waste or energy crops. Oil cakes or oil meals are solid residues obtained after oil extraction from the seeds. Another possible by-product is the washing water from raw biodiesel purification, which is an oily and soapy liquid. All of these materials have been suggested as feasible substrates for anaerobic degradation, although some issues and inhibitory factors have to be considered.



Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 876
Author(s):  
Dulce Palmerín-Carreño ◽  
Dania Martínez-Alarcón ◽  
José Luis Dena-Beltrán ◽  
Lineth Juliana Vega-Rojas ◽  
Alejandro Blanco-Labra ◽  
...  

The production of heterologous proteins for medical use is an important area of interest. The optimization of the bioprocesses includes the improvement of time, costs, and unit operations. Our study shows that a lectin fraction from Tepary bean (Phaseolus acutifolius) (TBLF) has cytotoxic effects on colon cancer cells and in vivo antitumorigenic activity. However, the low-yield, time-consuming, and expensive process made us focus on the development of a strategy to obtain a recombinant lectin using engineered Pichia pastoris yeast. Pure glycerol is one of the most expensive supplies; therefore, we worked on process optimization using crude glycerol from biodiesel production. Recombinant lectin (rTBL-1) production and purification were evaluated for the first time by an experimental design where crude glycerol (G65) was used and compared against pure glycerol (G99) in a controlled stirred-tank bioreactor with a fed-batch system. The recombinant lectin was detected and identified by SDS-PAGE, Western blot, and UHPLC–ESI–QTOF/MS analysis. The results show that the recombinant lectin can be produced from G65 with no significant differences with respect to G99: the reaction rates were 2.04 and 1.43 mg L−1 h−1, and the yields were 264.95 and 274.67 mgL−1, respectively. The current low cost of crude glycerol and our results show the possibility of producing heterologous proteins using this substrate with high productivity.



2011 ◽  
Vol 65 (4) ◽  
Author(s):  
Nina Kolesárová ◽  
Miroslav Hutňan ◽  
Viera Špalková ◽  
Rastislav Kuffa ◽  
Igor Bodík

AbstractIn this work, long-term operation of a pilot scale mixed anaerobic reactor processing crude glycerol and rapeseed meal is discussed. These materials are generated as by-products of biodiesel production. Mixed reactor was operated under mesophilic conditions for the period of 654 days. Total cumulative production of biogas reached 379 m3 (at atmospheric pressure and ambient temperature). Maximum volumetric loading achieved during the operation was 2.17 kg m−3 d−1 for the crude glycerol dose of 2 L. When dosing crude glycerol as a single substrate, average specific production of biogas of 0.76 m3 per L of the g-phase was achieved. The lack of nutrients in the g-phase had to be compensated by an addition of ammonium nitrogen in the form of urea into the reactor. Long term processing of crude glycerol demonstrated that accumulation of dissolved inorganic salts in the reactor can lead to inhibition of the methanogenic activity of microorganisms, causing breakdown of the system. Co-fermentation of crude glycerol with rapeseed meal provided stable biogas production and it was shown to be a feasible way of anaerobic degradation of these substrates. At the maximum volumetric load of 1.33 kg m−3 d−1 (500 mL of g-phase and 500 g of rapeseed meal), the average biogas production reached 0.58 m3 d−1.



ALCHEMY ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 46 ◽  
Author(s):  
Heny Dewajani ◽  
Windi Zamrudy ◽  
Hadi Saroso ◽  
Satria Paramarta ◽  
Wahyudianto Mulya

<p class="BodyAbstract">Biodiesel is one of the alternative fuels produced from the transesterification reaction between triglycerides and alcohols with glycerol by-products. So far, the resulting crude glycerol has not been maximally utilized because of its low purity. So, it is necessary to purify glycerol before turning it into a more useful compound. The purified glycerol can be reacted with acetic acid within esterification reaction (acetylation process) using an acid catalyst to produce glycerol triacetate (triacetin). One of the uses of triacetin as an additive in gasoline and biodiesel. The purpose of this study is to utilize glycerol from by-products from biodiesel production to bio-additive materials that can improve fuel quality and are environmentally friendly. The method used in this study begins with the purification of crude glycerol, modification of zeolite catalyst with impregnated of nickel metal followed by an acetylation reaction which held on temperature of 100°C for 60 min. The experimental results are analyzed using base titration to determine the remaining unreacted acids and are applied as bio-additives by adding them to commercial fuels and measured the increasing octane numbers. The result shows that the reaction conversion increases with increasing mole ratio of reactants and catalysts with the best results in the mole ratio of acetic acid and glycerol is 9:1 and catalyst 5% by weight of acetic acid with a conversion of 66.02%. As bio-additives the reaction product could increase the octane number of commercial fuel by 6.5 up to 8.5%.</p><p> </p>Keywords: glycerol, acetylation reaction, mofified zeolite, bio-additive



Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 317 ◽  
Author(s):  
Igor Dolejš ◽  
Monika Líšková ◽  
Vladimír Krasňan ◽  
Kristína Markošová ◽  
Michal Rosenberg ◽  
...  

The present study describes the production of the value-added chemical 1,3-propanediol (1,3-PD) from crude glycerol, a waste by-product formed during biodiesel production. The efficiency, robustness, and stability of the process were improved by immobilization of the anaerobic bacterium Clostridium butyricum into a polyvinyl alcohol (PVA) hydrogel. The highest average productivity, 6.8 ± 0.2 g/(L·h), was achieved in 10 consecutive, repeated batch fermentations, with an initial concentration of pure glycerol 45.5 ± 0.7 g/L, after 2.5 hours. The highest final concentration and yield of 1,3-PD, 28.3 ± 0.6 g/L, and 0.42 ± 0.01 g/g, respectively, were achieved in eleven repeated batch fermentations, after increasing the initial pure glycerol concentration to 70.4 ± 1.9 g/L. Two different types of crude glycerol, produced from used cooking oil (UCO) and rapeseed oil (RO), were tested in repeated batch fermentations, with an average productivity achieved of 2.3 ± 0.1 and 3.5 ± 0.3 g/(L·h), respectively. The highest final concentration and yield of 1,3-PD, 12.6 ± 0.9 g/L, and 0.35 ± 0.02 g/g, respectively, were observed in fifteen repeated batch fermentations with RO crude glycerol. An excellent stability of the immobilized anaerobic bacteria and increase of productivity in fermentation of crude glycerol was demonstrated.



2018 ◽  
Vol 91 (9) ◽  
pp. 1478-1485 ◽  
Author(s):  
G. S. Dmitriev ◽  
L. N. Zanaveskin ◽  
A. V. Terekhov ◽  
V. O. Samoilov ◽  
I. A. Kozlovskii ◽  
...  


2014 ◽  
Vol 44 (8) ◽  
pp. 1448-1451 ◽  
Author(s):  
Rafael Ernesto Balen ◽  
Patrick Nereu Tetu ◽  
Robie Allan Bombardelli ◽  
Paulo Cesar Pozza ◽  
Fábio Meurer

The increase in global biodiesel production is originating a glycerol surplus, which has no defined destination. An alternative to overcome this problem is its use as energy source in animal feeding. In Brazil, Pacu (Piaractus mesopotamicus) is one of the most farmed native fish species, whereas Silver catfish (Rhamdia quelen) is suitable for production in subtropical region. Considering little knowledge about crude glycerol utilization in feeds for Neotropical fish species, it was evaluated the apparent digestibility coefficients (ADCs) for energy of crude glycerol for P. mesopotamicus and R. quelen. The digestibility and digestible energy content of crude glycerol can be considered excellent even when compared to energy of common ingredients such as maize and wheat, presenting 0.97 and 0.89 of energy ADCs, and 15.2 and 13.95MJ kg-1 of digestible energy for Pacu and Silver catfish, respectively. In conclusion, crude glycerol is an energetic ingredient with good potential in Brazilian native fish diets.



2020 ◽  
Vol 12 (17) ◽  
pp. 7122
Author(s):  
Ludwika Tomaszewska-Hetman ◽  
Waldemar Rymowicz ◽  
Anita Rywińska

The study proposed the innovative low-cost strategy for erythritol production by Yarrowia lipolytica through developing a simple medium based on industrial waste by-products and a natural method for culture broth purification. Results obtained proved that corn steep liquor might successfully replace traditional sources of nitrogen and other nutrients without compromising activities of the enzymes responsible for erythritol production and its production level. As a consequence, a production process was performed where Y. lipolytica A-6 was able to produce 108.0 g/L of erythritol, with a production rate of 1.04 g/Lh and a yield of 0.45 g/g of the medium containing exclusively 220 g/L of crude glycerol derived from biodiesel production and 40 g/L of corn steep liquor. Moreover, a comparable concentration of erythritol (108.1 g/L) was obtained when a part of crude glycerol was exchanged for the crude fraction of fatty acids in the two-steps process. Next, the collected post-fermentation broths were used in the culture with Y. lipolytica Wratislavia K1 for natural purification. The process resulted in a high increase of erythritol selectivity from 72% to 97% and in the production of 22.0 g/L of biomass with 40.4% protein content, which enables its use as an attractive animal feedstuff.



2021 ◽  
Vol 10 (1) ◽  
pp. 41-45
Author(s):  
Slavica Ilić ◽  
Jovan Ćirić ◽  
Gordana Gojgić-Cvijović

In this paper we studied the effect of different amino acids (arginine, tryptophan, tyrosine, and phenylalanine) as nitrogen sources on the growth of actinomycete Streptomyces hygroscopicus CH-7 and the consumption of crude glycerol, obtained as a by-product in the biodiesel production from sunflower oil. The highest biomass concentration (9.5 g/L) was achieved using the basic medium and the medium with tryptophan (9.2 g/L), while the crude glycerol consumption was the highest in the basic medium (5.9 mg/mL) and the medium with phenylalanine (3.3 mg/mL).



Sign in / Sign up

Export Citation Format

Share Document