scholarly journals Application of Recombinase-Based In Vivo Expression Technology to Bifidobacterium longum subsp. longum for Identification of Genes Induced in the Gastrointestinal Tract of Mice

2020 ◽  
Vol 8 (3) ◽  
pp. 410 ◽  
Author(s):  
Hiroka Koguchi ◽  
Natsumi Ishigami ◽  
Mikiyasu Sakanaka ◽  
Kako Yoshida ◽  
Sayaka Hiratou ◽  
...  

Bifidobacteria are one of the major components in human gut microbiota and well-known as beneficial microbes. However, clarification of commensal mechanisms of bifidobacteria in the intestines is still ongoing, especially in the presence of the gut microbiota. Here, we applied recombinase-based in vivo expression technology (R-IVET) using the bacteriophage P1 Cre/loxP system to Bifidobacterium longum subsp. longum 105-A (B. longum 105-A) to identify genes that are specifically expressed in the gastrointestinal tract of conventionally raised mice. Oral administration of the genomic DNA library of B. longum 105-A to conventionally raised mice resulted in the identification of 73 in vivo-induced genes. Four out of seven tested genes were verified in vivo-specific induction at least in the cecum by quantitative reverse transcription PCR. Although there is still room for improvement of the system, our findings can contribute to expanding our understanding of the commensal behavior of B. longum in the gut ecosystem.

2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


2011 ◽  
Vol 166 (8) ◽  
pp. 629-642 ◽  
Author(s):  
Christel Mattéotti ◽  
Philippe Thonart ◽  
Frédéric Francis ◽  
Eric Haubruge ◽  
Jacqueline Destain ◽  
...  

2004 ◽  
Vol 186 (23) ◽  
pp. 7829-7835 ◽  
Author(s):  
Peter A. Bron ◽  
Maria Marco ◽  
Sally M. Hoffer ◽  
Esther Van Mullekom ◽  
Willem M. de Vos ◽  
...  

ABSTRACT In this paper we describe the growth, morphological, and genetic responses of Lactobacillus plantarum WCFS1 to bile. Growth experiments revealed that a stepwise increase in the porcine bile concentration led to a gradual decrease in the maximal growth rate. Moreover, the final density reached by an L. plantarum culture growing in MRS containing 0.1% bile was approximately threefold lower than that in MRS lacking bile. The morphology of the cells grown in MRS containing 0.1% bile was investigated by scanning electron microscopy, which revealed that cells clumped together and had rough surfaces and that some of the cells had a shrunken and empty appearance, which clearly contrasted with the characteristic rod-shaped, smooth-surface morphology of L. plantarum cells grown in MRS without bile. An alr complementation-based genome-wide promoter screening analysis was performed with L. plantarum, which led to identification of 31 genes whose expression was potentially induced by 0.1% porcine bile. Remarkably, 11 membrane- and cell wall-associated functions appeared to be induced by bile, as were five functions involved in redox reactions and five regulatory factors. Moreover, the lp_0237 and lp_0775 genes, identified here as genes that are inducible by bile in vitro, were previously identified in our laboratory as important for L. plantarum in vivo during passage in the mouse gastrointestinal tract (P. A. Bron, C. Grangette, A. Mercenier, W. M. de Vos, and M. Kleerebezem, J. Bacteriol. 186:5721-5729, 2004). A quantitative reverse transcription-PCR approach focusing on these two genes confirmed that the expression level of lp_0237 and lp_0775 was significantly higher in cells grown in the presence of bile and cells isolated from the mouse duodenum than in cells grown on laboratory medium without bile.


Author(s):  
Wanyin Tao ◽  
Shu Zhu ◽  
Guorong Zhang ◽  
Xiaofang Wang ◽  
Meng Guo ◽  
...  

The current global COVID-19 pandemic is caused by beta coronavirus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which already infected over 10 million and caused 500 thousand deaths by June 2020. Overproduction of cytokines triggered by COVID-19 infection, known as "cytokine storm", is a highly risk factor associated with disease severity. However, how COVID-19 infection induce cytokine storm is still largely unknown. Accumulating in vitro and in vivo evidence suggests that gut is also susceptible to COVID19 infection: Human intestinal organoids, an in vitro model which mimic the specific cell type and spatial structure of the intestine, were susceptible to SARS-CoV2 infection; A significant fraction of patients reported gut symptoms; Viral RNA may persist for more than 30 days and infectious virus could be isolated in fecal samples. The gastrointestinal tract is the primary site of interaction between the host immune system with symbiotic and pathogenic microorganisms. The bacteria resident in our gastrointestinal tract, known as gut microbiota, is important to maintain the homeostasis of our immune system. While imbalance of gut microbiota, or dysbiosis, is associated with multiple inflammation diseases5. It's possible that SARS-CoV-2 infection may lead to alternation of gut microbiota thus worsen the host symptom. IL-18 is a proinflammatory cytokine produced multiple enteric cells, including intestinal epithelial cells (IECs), immune cells as well as enteric nervous system, and was shown to increase in the serum of COVID-19 patients. Immunoglobin A (IgA) is mainly produced in the mucosal surfaces, in humans 40-60mg kg-1 day-1 than all other immunoglobulin isotypes combined, and at least 80% of all plasma cells are located in the intestinal lamina propria. Recent study showed that SARS-CoV-2 specific IgA in the serum is positively correlate with the disease severity in COVID-19 patients11. Here we investigated the alterations of microbiota in COVID-19 patients, and its correlation with inflammatory factor IL-18 and SARS-CoV2 specific IgA.


2016 ◽  
Vol 116 (2) ◽  
pp. 270-278 ◽  
Author(s):  
Tatsuya Ehara ◽  
Hirohisa Izumi ◽  
Muneya Tsuda ◽  
Yuki Nakazato ◽  
Hiroshi Iwamoto ◽  
...  

AbstractIt is important to provide formula-fed infants with a bifidobacteria-enriched gut microbiota similar to those of breastfed infants to ensure intestinal health. Prebiotics, such as certain oligosaccharides, are a useful solution to this problem, but the combinational benefits of these oligosaccharides have not been evaluated. This study investigated the benefits of oligosaccharide combinations and screened for an optimal combination of oligosaccharides to promote healthy gut microbiota of formula-fed infants. In vitro and in vivo experiments were performed to assess the bifidogenic effects of lactulose (LAC) alone and LAC combined with raffinose (RAF) and/or galacto-oligosaccharide (GOS), using a mixed culture model and neonatal mice orally administered with these oligosaccharides and Bifidobacterium breve. In the in vitro culture model, the combination of the three oligosaccharides (LAC–RAF–GOS) significantly increased cell numbers of B. breve and Bifidobacterium longum (P<0·05) compared with either LAC alone or the combination of two oligosaccharides, and resulted in the production of SCFA under anaerobic conditions. In the in vivo experiment, the LAC–RAF–GOS combination significantly increased cell numbers of B. breve and Bacteroidetes in the large intestinal content (P<0·05) and increased acetate concentrations in the caecal content and serum of neonatal mice. Genes related to metabolism and immune responses were differentially expressed in the liver and large intestine of mice administered with LAC–RAF–GOS. These results indicate a synergistic effect of the LAC–RAF–GOS combination on the growth of bifidobacteria and reveal possible benefits of this combination to the gut microbiota and health of infants.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 713
Author(s):  
Jeanne Alard ◽  
Benoit Cudennec ◽  
Denise Boutillier ◽  
Véronique Peucelle ◽  
Amandine Descat ◽  
...  

Since alterations of the gut microbiota have been shown to play a major role in obesity, probiotics have attracted attention. Our aim was to identify probiotic candidates for the management of obesity using a combination of in vitro and in vivo approaches. We evaluated in vitro the ability of 23 strains to limit lipid accumulation in adipocytes and to enhance the secretion of satiety-promoting gut peptide in enteroendocrine cells. Following the in vitro screening, selected strains were further investigated in vivo, single, or as mixtures, using a murine model of diet-induced obesity. Strain Bifidobacterium longum PI10 administrated alone and the mixture of B. animalis subsp. lactis LA804 and Lactobacillus gasseri LA806 limited body weight gain and reduced obesity-associated metabolic dysfunction and inflammation. These protective effects were associated with changes in the hypothalamic gene expression of leptin and leptin receptor as well as with changes in the composition of gut microbiota and the profile of bile acids. This study provides crucial clues to identify new potential probiotics as effective therapeutic approaches in the management of obesity, while also providing some insights into their mechanisms of action.


1998 ◽  
Vol 66 (11) ◽  
pp. 5570-5575 ◽  
Author(s):  
Li Liu ◽  
D. Michael Payne ◽  
Vicky L. van Santen ◽  
Kevin Dybvig ◽  
Victor S. Panangala

ABSTRACT A 62-kDa cell surface antigen (M9) of Mycoplasma gallisepticum PG31 that mediates antibody-induced agglutination of the organism was purified and subjected to N-terminal amino-acid sequencing. A 999-bp region of the cDNA encoding the M9 protein was generated by reverse transcription-PCR, and its nucleotide sequence was determined. PCR primers based on this sequence were used to screen a genomic DNA library of PG31. A full-length M9 protein-encoding gene was isolated and sequenced, revealing 96% nucleotide identity with thepMGA1.1 gene of M. gallisepticum S6. Sequence analyses of the M9 gene and flanking open reading frames that encode other pMGA family members suggest that a tandemly repeated GAA sequence may influencepMGA gene expression.


2019 ◽  
Author(s):  
Mengfei Peng ◽  
Zajeba Tabashsum ◽  
Puja Patel ◽  
Cassandra Bernhardt ◽  
Chitrine Biswas ◽  
...  

AbstractProbiotics are recognized to outcompete pathogenic bacteria by receptor-mediated colonizing and secreting functional metabolites which have direct antimicrobial activities towards pathogens and/or improving host’s gut health and immunity. We have constructed aLactobacillus casei(LC) probiotic strain, LC+mcra, by insertingmcra(myosin cross-reactive antigen) gene, which stimulates the conversion of conjugated linoleic acids. In this study, we evaluated the protective roles of LC+mcraagainst pathogenicSalmonella entericaserovar Typhimurium (ST) and enterohaemorrhagicE. coli(EHEC) infection in BALB/cJ mice. Through a series ofin vivoinvestigation, we observed that LC+mcracolonized efficiently in mice gut and competitively reduced the infection with ST and EHEC in various locations of small and large intestine, specifically cecum, jejunum, and ileum (p<0.05). The cecal microbiota in ST-challenged mice with LC+mcraprotection were positively modulated with higher relative abundances Firmicutes but lower Proteobacteria plus increased bacterial species diversity/richness based on 16S metagenomic sequencing. Based on cytokine gene expression analysis by qRT-PCR, mice pretreated with LC+mcrawere found with attenuated bacterial pathogen-induced gut inflammation. Furthermore, mice fed LC+mcradaily for one week could protect themselves from the impairments caused by enteric infections with ST or EHEC. These impairments include weight loss, negative hematological changes, intestinal histological alterations, and potential death. Thisin vivostudy suggests that daily consumption of novel conjugated linoleic acids over-producing probiotic might be efficient in improving gut intestinal microbiome composition and preventing/combating foodborne enteric bacterial infections with pathogenicSalmonellaand diarrheagenicE. coli.Author summaryNumerous bacteria colonize throughout the gastrointestinal tract and form a complex microbial ecosystem known as gut microbiota. A balanced microbial composition is crucial for maintaining proper gut health and host defense against pathogenic microbes. However, enteric bacterial infections could cause illness and even lead to death of host when foodborne pathogens likeSalmonellaand enterohaemorrhagicE. coli(EHEC) invade gut intestine and cause imbalance of gut microbiota. Beneficial microbes in gastrointestinal tract such asLactobacillusand their secreted bio-active metabolites, are potential bio-agents to improve gut immunity and outcompete bacterial pathogens. In this study, to evaluate roles of novelLactobacillusstrain LC+mcrawhich produce higher amount of a group of beneficial secondary metabolites called conjugated linoleic acids, we have shown that daily oral administration of this LC+mcrafor one-week in mice lead to higher proportion of beneficial bacterial colonization in different locations of intestine and a significant reduction of pathogenicSalmonellaand EHEC colonization. Furthermore, mice fed with LC+mcrarestore and modulateSalmonellainfection-induced negative impact on gut microbiota composition and protect themselves from various levels of physiological damage.


Sign in / Sign up

Export Citation Format

Share Document