Gut Microbiota and Blood Metabolome in Patients with Autoimmune Diseases of Gastrointestinal Tract

Author(s):  
E. Demyanova ◽  
S. Sitkin ◽  
T. Vakhitov ◽  
O. Shalaeva
2019 ◽  
Vol 97 (9) ◽  
pp. 3741-3757 ◽  
Author(s):  
Nirosh D Aluthge ◽  
Dana M Van Sambeek ◽  
Erin E Carney-Hinkle ◽  
Yanshuo S Li ◽  
Samodha C Fernando ◽  
...  

Abstract A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Czech ◽  
Eugeniusz Ryszard Grela ◽  
Martyna Kiesz

AbstractThe aim of the study was to assess the effect of fermented dried soybean (FSBM) and/or fermented rapeseed meal (FRSM) in diets for weaned piglets on production results, nutrient digestibility, gastrointestinal tract histology, and the composition of the gut microbiota. Piglets in the control group received standard diets with soybean meal. Animals in all experimental groups received diets in which a portion of the soybean meal was replaced: in group FR—8% FRSM; in group FR/FS—6% FRSM and 2% FSBM; in group FS/FR—2% FRSM and 6% FSBM and in group FS—8% FSBM. The use of 8% FRSM or 6% FRSM and 2% FSBM in the piglet diets had a positive effect on average daily gains. Piglets from the FR and FR/FS groups had the highest feed conversion rate. Group FS/FR and FS piglets had significantly lower mortality and lower incidence of diarrhoea. Piglets fed a diet with the fermented components, in particular with 8% FRSM or 6% FRSM and 2% FSBM, exhibited a positive effect on the microbiological composition and histology of intestines, which resulted in improved nutrient digestibility coefficients (ATTD and AID).


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2428
Author(s):  
Małgorzata Guz ◽  
Witold Jeleniewicz ◽  
Anna Malm ◽  
Izabela Korona-Glowniak

A still growing interest between human nutrition in relation to health and disease states can be observed. Dietary components shape the composition of microbiota colonizing our gastrointestinal tract which play a vital role in maintaining human health. There is a strong evidence that diet, gut microbiota and their metabolites significantly influence our epigenome, particularly through the modulation of microRNAs. These group of small non-coding RNAs maintain cellular homeostasis, however any changes leading to impaired expression of miRNAs contribute to the development of different pathologies, including neoplastic diseases. Imbalance of intestinal microbiota due to diet is primary associated with the development of colorectal cancer as well as other types of cancers. In the present work we summarize current knowledge with particular emphasis on diet-microbiota-miRNAs axis and its relation to the development of colorectal cancer.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 69-69
Author(s):  
Dylan Dodd

Abstract The gastrointestinal tract of mammals is home to a dense population of microbes which influence host physiology and health. One of the most concrete ways that the gut microbiota impacts host biology is through the production of hundreds of chemically diverse small molecules. These molecules are absorbed into the bloodstream, where they reach concentrations similar to those achieved by pharmaceuticals and bind host receptors leading to changes in cellular and organ physiology. Here I will summarize recent work from our group and others that show how microbially sourced metabolites alter health and physiology of the host. I will also discuss how mechanistic studies of small molecules from the microbiota are enabling new therapeutic approaches to harness the metabolic potential of the gut microbiota.


2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


2019 ◽  
Vol 7 (11) ◽  
pp. 480 ◽  
Author(s):  
Yang ◽  
Park ◽  
Park ◽  
Baek ◽  
Chun

The gut microbiota modulates overall metabolism, the immune system and brain development of the host. The majority of mammalian gut microbiota consists of bacteria. Among various model animals, the mouse has been most widely used in pre-clinical biological experiments. The significant compositional differences in taxonomic profiles among different mouse strains due to gastrointestinal locations, genotypes and vendors have been well documented. However, details of such variations are yet to be elucidated. This study compiled and analyzed 16S rRNA gene-based taxonomic profiles of 554 healthy mouse samples from 14 different projects to construct a comprehensive database of the microbiome of a healthy mouse gastrointestinal tract. The database, named Murine Microbiome Database, should provide researchers with useful taxonomic information and better biological insight about how each taxon, such as genus and species, is associated with locations in the gastrointestinal tract, genotypes and vendors. The database is freely accessible over the Internet at http://leb.snu.ac.kr/mmdb/.


2021 ◽  
Vol 102 (4) ◽  
pp. 518-527
Author(s):  
D D Safina ◽  
S R Abdulkhakov

At present time, a number of questions regarding the pathophysiological characteristics and therapeutic approaches to the treatment of the new coronavirus infection COVID-19 remain unresolved. In some cases, patients with COVID-19 may experience symptoms of gastrointestinal tract disorder. According to the literature, the new SARS-CoV-2 coronavirus can replicate in the gastrointestinal tract and may affect the gut microbiota. The article aims to review studies about the possible relationship between the gut microbiota condition and the course of COVID-19 infection, as well as to consider the gut microbiota as a potential therapeutic target and probiotic drugs as possible therapeutic agents in the treatment of viral infections, including COVID-19 infection. It is known that gut microbiota condition is one of the factors determining the susceptibility and features of the bodys response to various infectious agents, possibly including the COVID-19 infection. Currently published studies demonstrate a possible relationship between the gut microbiota condition and the course of COVID-19 infection, however, to confirm this hypothesis, additional studies are required, which will allow to make more unambiguous conclusions with subsequent development of new approaches to the prevention and treatment of infection. Potentially a lot of hope in this direction is inspired by the results of probiotics studies, which showed that their use may reduce the frequency and severity of viral infections of the upper respiratory tract. However, currently, there is insufficient data to extrapolate the results of these studies to COVID-19 patients.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Satya Prakash ◽  
Catherine Tomaro-Duchesneau ◽  
Shyamali Saha ◽  
Arielle Cantor

The gut microbiota plays a crucial role in maintaining health. Alterations of the gut bacterial population have been associated with a number of diseases. Past and recent studies suggest that one can positively modify the contents of the gut microbiota by introducing prebiotics, probiotics, synbiotics, and other therapeutics. This paper focuses on probiotic modulation of the gut microbiota by their delivery to the lower gastrointestinal tract (GIT). There are numerous obstacles to overcome before microorganisms can be utilized as therapeutics. One important limitation is the delivery of viable cells to the lower GIT without a significant loss of cell viability and metabolic features through the harsh conditions of the upper GIT. Microencapsulation has been shown to overcome this, with various types of microcapsules available for resolving this limitation. This paper discusses the gut microbiota and its role in disease, with a focus on microencapsulated probiotics and their potentials and limitations.


2019 ◽  
Vol 7 (3) ◽  
pp. 66 ◽  
Author(s):  
Lorenzo Drago

Literature has recently highlighted the enormous scientific interest on the relationship between the gut microbiota and colon cancer, and how the use of some selected probiotics can have a future impact on the adverse events which occur during this disease. Although there is no clear evidence to claim that probiotics are effective in people with cancer, recent reviews have found that probiotics can significantly reduce the incidence of diarrhea and the average frequency of daily bowel movements. However, most of this evidence needs to be more clinically convincing and further discussed. Undoubtedly, some probiotics, when properly dosed and administered, can have a strong rebalance effect on the gut microbiota and as a consequence a possible positive action on immune modulation of the gastrointestinal tract and on inflammation of the intestinal mucosa. Many recent findings indeed support the hypothesis that the daily use of some selected probiotics can be a feasible approach to effectively protect patients against the risk of some severe consequences due to radiation therapy or chemotherapy. This paper aims to review the most recent articles in order to consider a possible adjuvant approach for the use of certain well-balanced probiotics to help prevent colon cancer and the adverse effects caused by related therapies.


Sign in / Sign up

Export Citation Format

Share Document