scholarly journals High Prevalence of Human Polyomavirus 7 in Cholangiocarcinomas and Adjacent Peritumoral Hepatocytes: Preliminary Findings

2020 ◽  
Vol 8 (8) ◽  
pp. 1125 ◽  
Author(s):  
Faisal Klufah ◽  
Ghalib Mobaraki ◽  
Emil Chteinberg ◽  
Raed A. Alharbi ◽  
Véronique Winnepenninckx ◽  
...  

Cholangiocarcinoma (CCA) is a rare biliary-duct malignancy with poor prognosis. Recently, the presence of the human polyomavirus 6 (HPyV6) has been reported in the bile of diverse hepatobiliary diseases, particularly in the bile of CCA patients. Here, we investigated the presence of novel HPyVs in CCA tissues using diverse molecular techniques to assess a possible role of HPyVs in CCA. Formalin-Fixed Paraffin-Embedded (FFPE) tissues of 42 CCA patients were included in this study. PCR-based screening for HPyVs was conducted using degenerated and HPyV-specific primers. Following that, we performed FISH, RNA in situ hybridization (RNA-ISH), and immunohistochemistry (IHC) to assess the presence of HPyVs in selected tissues. Of all 42 CCAs, 25 (59%) were positive for one HPyV, while 10 (24%) CCAs were positive for 2 HPyVs simultaneously, and 7 (17%) were negative for HPyVs. Of the total 35 positive CCAs, 19 (45%) were positive for HPyV7, 4 (9%) for HPyV6, 2 (5%) for Merkel cell polyomavirus (MCPyV), 8 (19%) for both HPyV7/MCPyV, and 2 (5%) for both HPyV6/HPyV7 as confirmed by sequencing. The presence of viral nucleic acids was confirmed by specific FISH, while the RNA-ISH confirmed the presence of HPyV6 on the single-cell level. In addition, expression of HPyV7, HPyV6, and MCPyV proteins were confirmed by IHC. Our results strongly indicate that HPyV7, HPyV6, and MCPyV infect bile duct epithelium, hepatocytes, and CCA cells, which possibly suggest an indirect role of these viruses in the etiopathogenesis of CCA. Furthermore, the observed hepatotropism of these novel HPyV, in particular HPyV7, might implicate a role of these viruses in other hepatobiliary diseases.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1900
Author(s):  
Dickson W. L. Wong ◽  
Barbara M. Klinkhammer ◽  
Sonja Djudjaj ◽  
Sophia Villwock ◽  
M. Cherelle Timm ◽  
...  

Multiorgan tropism of SARS-CoV-2 has previously been shown for several major organs. We have comprehensively analyzed 25 different formalin-fixed paraffin-embedded (FFPE) tissues/organs from autopsies of fatal COVID-19 cases (n = 8), using histopathological assessment, detection of SARS-CoV-2 RNA using polymerase chain reaction and RNA in situ hybridization, viral protein using immunohistochemistry, and virus particles using transmission electron microscopy. SARS-CoV-2 RNA was mainly localized in epithelial cells across all organs. Next to lung, trachea, kidney, heart, or liver, viral RNA was also found in tonsils, salivary glands, oropharynx, thyroid, adrenal gland, testicles, prostate, ovaries, small bowel, lymph nodes, skin and skeletal muscle. Viral RNA was predominantly found in cells expressing ACE2, TMPRSS2, or both. The SARS-CoV-2 replicating RNA was also detected in these organs. Immunohistochemistry and electron microscopy were not suitable for reliable and specific SARS-CoV-2 detection in autopsies. These findings were validated using in situ hybridization on external COVID-19 autopsy samples (n = 9). Apart from the lung, correlation of viral detection and histopathological assessment did not reveal any specific alterations that could be attributed to SARS-CoV-2. In summary, SARS-CoV-2 and its replication could be observed across all organ systems, which co-localizes with ACE2 and TMPRSS2 mainly in epithelial but also in mesenchymal and endothelial cells. Apart from the respiratory tract, no specific (histo-)morphologic alterations could be assigned to the SARS-CoV-2 infection.


2021 ◽  
pp. 104063872098688
Author(s):  
Andrea M. Camargo-Castañeda ◽  
Lauren W. Stranahan ◽  
John F. Edwards ◽  
Daniel G. Garcia-Gonzalez ◽  
Leonardo Roa ◽  
...  

In male dogs, Brucella canis frequently causes epididymitis, ultimately resulting in testicular atrophy and infertility. Although B. canis predominantly affects the epididymis, the misleading term “orchitis” is still commonly used by clinicians. Of additional concern, diagnosis in dogs remains challenging because of variable sensitivity and specificity of serologic assays and fluctuations in bacteremia levels in infected dogs, reducing the sensitivity of blood culture. We describe here the histologic lesions in the scrotal contents of 8 dogs suspected of being infected with B. canis and clinically diagnosed with orchitis. We explored the possibility of using immunohistochemistry (IHC) and real-time PCR (rtPCR) in formalin-fixed, paraffin-embedded (FFPE) tissues to detect the presence of B. canis. Epididymitis of variable chronicity was identified in all 8 dogs, with only 3 also exhibiting orchitis. Using rtPCR, the presence of B. canis was identified in 4 of 8 dogs, with 3 of these 4 dogs also positive by IHC. These results suggest that rtPCR and IHC are promising techniques that can be used in FFPE tissues to detect B. canis when other detection techniques are unavailable. Additionally, accurate recognition of epididymitis rather than orchitis in suspect cases could aid in accurate diagnosis.


2018 ◽  
Vol 22 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Javal Sheth ◽  
Anthony Arnoldo ◽  
Yunan Zhong ◽  
Paula Marrano ◽  
Carlos Pereira ◽  
...  

Background NanoString technology is an innovative barcode-based system that requires less tissue than traditional techniques and can test for multiple fusion transcripts in a single reaction. The objective of this study was to determine the utility of NanoString technology in the detection of sarcoma-specific fusion transcripts in pediatric sarcomas. Design Probe pairs for the most common pediatric sarcoma fusion transcripts were designed for the assay. The NanoString assay was used to test 22 specific fusion transcripts in 45 sarcoma samples that had exhibited one of these fusion genes previously by reverse transcription polymerase chain reaction (RT-PCR). A mixture of frozen (n = 18), formalin-fixed, paraffin-embedded (FFPE) tissue (n = 23), and rapid extract template (n = 4) were used for testing. Results Each of the 22 transcripts tested was detected in at least one of the 45 tumor samples. The results of the NanoString assay were 100% concordant with the previous RT-PCR results for the tumor samples, and the technique was successful using both FFPE and rapid extract method. Conclusion Multiplexed interrogation for sarcoma-specific fusion transcripts using NanoString technology is a reliable approach for molecular diagnosis of pediatric sarcomas and works well with FFPE tissues. Future work will involve validating additional sarcoma fusion transcripts as well as determining the optimal workflow for diagnostic purposes.


2020 ◽  
Vol 79 (11) ◽  
pp. 1193-1202
Author(s):  
Haiyin Zheng ◽  
Katherina Baranova ◽  
Jun Song ◽  
Lei Yan ◽  
Saumik Biswas ◽  
...  

Abstract Ependymomas are a heterogeneous group of central nervous system tumors. Despite the recent advances, there are no specific biomarkers for ependymomas. In this study, we explored the role of homeobox (HOX) genes and long noncoding RNA (LncRNA) HOTAIR in ependymomas along the neural axis. Bioinformatics analysis was performed on publicly available gene expression data. Quantitative RT-PCR was used to determine the mRNA expression level among different groups of ependymomas. RNA in situ hybridization (ISH) with probes specific to HOTAIR was performed on tumor tissue microarray (TMA) constructed with 19 ependymomas formalin-fixed paraffin-embedded tissue. Gene expression analysis revealed higher expression of posterior HOX genes and HOTAIR in myxopapillary ependymoma (MPE), in comparison to other spinal and intracranial ependymoma. qRT-PCR confirmed the high HOXD10 expression in spinal MPEs. There was a significant upregulation of HOTAIR expression in spinal MPE and elevated HOTAIR expressions were further confirmed by RNA ISH on the TMA. Intriguingly, HOXD10 and HOTAIR expressions were not elevated in nonependymoma spinal tumors. Our collective results suggest an important role for the lncRNA HOTAIR and posterior HOX genes in the tumorigenesis of spinal MPE. HOTAIR may also serve as a potential diagnostic marker for spinal MPE.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Tamara Sequeiros ◽  
Marta García ◽  
Melania Montes ◽  
Mireia Oliván ◽  
Marina Rigau ◽  
...  

Prostate cancer (PCa) is the most frequently diagnosed type of cancer in developed countries. The decisive method of diagnosis is based on the results of biopsies, morphologically evaluated to determine the presence or absence of cancer. Although this approach leads to a confident diagnosis in most cases, it can be improved by using the molecular markers present in the tissue. Both miRNAs and proteins are considered excellent candidates for biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues, due to their stability over long periods of time. In the last few years, a concerted effort has been made to develop the necessary tools for their reliable measurement in these types of samples. Furthermore, the use of these kinds of markers may also help in establishing tumor grade and aggressiveness, as well as predicting the possible outcomes in each particular case for the different treatments available. This would aid clinicians in the decision-making process. In this review, we attempt to summarize and discuss the potential use of microRNA and protein profiles in FFPE tissue samples as markers to better predict PCa diagnosis, progression, and response to therapy.


2020 ◽  
pp. 030098582097178
Author(s):  
Llorenç Grau-Roma ◽  
Mauricio Navarro ◽  
Sohvi Blatter ◽  
Christian Wenker ◽  
Sonja Kittl ◽  
...  

Several outbreaks of necrotic enteritis-like disease in lorikeets, from which Clostridium perfringens was consistently isolated, are described. All lorikeets had acute, segmental, or multifocal fibrinonecrotizing inflammatory lesions in the small and/or the large intestine, with intralesional gram-positive rods. The gene encoding C. perfringens alpha toxin was detected by PCR (polymerase chain reaction) on formalin-fixed, paraffin-embedded (FFPE) tissues in 20 out of 24 affected lorikeets (83%), but it was not amplified from samples of any of 10 control lorikeets ( P < .0001). The second most prevalent C. perfringens toxin gene detected was the beta toxin gene, which was found in FFPE from 7 out of 24 affected lorikeets (29%). The other toxin genes were detected inconsistently and in a relatively low number of samples. These cases seem to be associated with C. perfringens, although the specific type involved could not be determined.


2008 ◽  
Vol 23 (3) ◽  
pp. 154-160 ◽  
Author(s):  
A. Ribeiro-Silva ◽  
J.P. Oliveira da Costa ◽  
S. Britto Garcia

Osteopontin (OPN) is a secreted, calcium-binding phosphorylated glycoprotein involved in several physiological and pathological events such as angiogenesis, apoptosis, inflammation, wound healing, vascular remodeling, calcification of mineralized tissues, and induction of cell proteases. There is growing interest in the role of OPN in breast cancer. In an attempt to obtain new insight into the pathogenesis of OPN-associated breast carcinomas, an immunohistochemical panel with 17 primary antibodies including cytokeratins and key regulators of the cell cycle was performed in 100 formalin-fixed paraffin-embedded samples of invasive breast carcinomas. OPN was expressed in 65% of tumors and was negatively correlated with estrogen (p=0.0350) and progesterone (p=0.0069) receptors, but not with the other markers and clinicopathological features evaluated including age, menstrual status, pathological grading, tumor size, and metastasis. There was no correlation between OPN expression and carcinomas of the basal-like phenotype (p=0.1615); however, OPN correlated positively with c-erbB-2 status (p=0.0286) and negatively with carcinomas of the luminal subtype (p=0.0353). It is well known that carcinomas overexpressing c-erbB-2 protein have a worse prognosis than luminal tumors. Here, we hypothesize that the differential expression of OPN in the first subtype of carcinomas may contribute to their more aggressive behavior.


2015 ◽  
Vol 53 (5) ◽  
pp. 520-527 ◽  
Author(s):  
Cristina E. Canteros ◽  
Alejandro Vélez H. ◽  
Adriana I. Toranzo ◽  
Roberto Suárez-Alvarez ◽  
Ángela Tobón O. ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 620-620
Author(s):  
Lisa M. Rimsza ◽  
George Wright ◽  
Mark Schwartz ◽  
Wing C. Chan ◽  
Elaine S Jaffe ◽  
...  

Abstract Abstract 620 Classification of DLBCL into cell-of-origin (COO) subtypes based on gene expression profiles has well-established prognostic value. These subtypes, termed Germinal Center B cell (GCB) and Activated B cell (ABC) also have different genetic alterations and over-expression of different pathways that may serve as therapeutic targets. Thus, accurate classification is essential for analysis of clinical trial results and planning new trials using targeted agents. The gold standard for COO classification uses gene expression profiling (GEP) of snap frozen tissues, and a Bayesian predictor algorithm utilizing the expression levels of 14 key genes (G. Wright et al PNAS 2003). An immunohistochemistry (IHC) classification scheme by C. Hans et al (Blood 2004), based on 3 antibodies, is widely used as a substitute for GEP classification, however does not completely correlate with GEP. We recently described a qNPA assay (ArrayPlateR, High ThroughPut Genomics, Tucson, AZ) with excellent correlation between frozen and formalin fixed paraffin embedded (FFPE) tissues (R. Roberts et al, Lab Invest 2007). In this study, we investigated whether this technique could be used for accurate classification of COO using FFPE tissues. We expanded the previous gene probe repertoire of the DLBCL-ArrayPlateR assay to include the 14 genes (represented by 17 probe sets) most pertinent to COO classification. 52 cases of R-CHOP treated DLBCL that had undergone GEP using the Affymetrix U133 Plus 2.0 microarray and had matching FFPE blocks were analyzed with qNPA in duplicate. The genes included CD10, LRMP, CCND2, ITPKB, PIM1, IL16, IRF4, FUT8, BCL6, PTPN1, LM02, CD39, MYBL1, IGHM. Results were evaluated using the previously published algorithm with a leave-one-out cross validation scheme to classify cases into GCB or ABC subtypes. These results were compared to COO classification based on frozen tissue GEP profiles. All 14 genes in all 52 cases were successfully analyzed with no missing data points. For each case, a probability statistic was generated indicating the likelihood that the classification using qNPA was accurate. Of the 54 cases, 25 were GCB, 27 were ABC and 4 were unclassifiable by GEP. Of the GCB cases, 23/25 (92%) were classified correctly by qNPA with a confidence cut-off of >0.9 and 25/25 (100%) classified correctly with a confidence cut-off of >0.8. Of the ABC cases, 25/27 (93%) were correctly classified as ABC using qNPA with a confidence cut-off of >0.9 and 27/27 (100%) classified correctly with a confidence cut-off of >0.8. In summary, the qNPA technique accurately categorized DLBCL into GCB and ABC subtypes, as defined by GEP. There were no technical difficulties with any of the pathological materials although they were collected retrospectively from a variety of institutions and countries with different fixation methods. This approach represents a substantial improvement over previously published IHC methods and is applicable to FFPE tissues, therefore overcoming the need for snap frozen materials. This technically robust classification method has potential to have a significant impact on future DLBCL research and clinical trial development. Disclosures: Rimsza: High Throughput Genomics: HTG provided the assays at no charge to Dr. Rimsza's lab. Schwartz:High Throughput Genomics: Employment. Gascoyne:Roche Canada: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document