scholarly journals The Janus Kinase Inhibitor Ruxolitinib Prevents Terminal Shock in a Mouse Model of Arenavirus Hemorrhagic Fever

2021 ◽  
Vol 9 (3) ◽  
pp. 564
Author(s):  
Mehmet Sahin ◽  
Melissa M. Remy ◽  
Doron Merkler ◽  
Daniel D. Pinschewer

Arenaviruses such as Lassa virus cause arenavirus hemorrhagic fever (AVHF), but protective vaccines and effective antiviral therapy remain unmet medical needs. Our prior work has revealed that inducible nitric oxide synthase (iNOS) induction by IFN-γ represents a key pathway to microvascular leak and terminal shock in AVHF. Here we hypothesized that Ruxolitinib, an FDA-approved JAK inhibitor known to prevent IFN-γ signaling, could be repurposed for host-directed therapy in AVHF. We tested the efficacy of Ruxolitinib in MHC-humanized (HHD) mice, which develop Lassa fever-like disease upon infection with the monkey-pathogenic lymphocytic choriomeningitis virus strain WE. Anti-TNF antibody therapy was tested as an alternative strategy owing to its expected effect on macrophage activation. Ruxolitinib but not anti-TNF antibody prevented hypothermia and terminal disease as well as pleural effusions and skin edema, which served as readouts of microvascular leak. As expected, neither treatment influenced viral loads. Intriguingly, however, and despite its potent disease-modifying activity, Ruxolitinib did not measurably interfere with iNOS expression or systemic NO metabolite levels. These findings suggest that the FDA-approved JAK-inhibitor Ruxolitinib has potential in the treatment of AVHF. Moreover, our observations indicate that besides IFN-γ-induced iNOS additional druggable pathways contribute essentially to AVHF and are amenable to host-directed therapy.

Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 49 ◽  
Author(s):  
Nicolas Baillet ◽  
Sophie Krieger ◽  
Xavier Carnec ◽  
Mathieu Mateo ◽  
Alexandra Journeaux ◽  
...  

Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related, rodent-born mammarenaviruses. LASV is the causative agent of Lassa fever, a deadly hemorrhagic fever endemic in West Africa, whereas MOPV is non-pathogenic in humans. The Z matrix protein of arenaviruses is essential to virus assembly and budding by recruiting host factors, a mechanism that remains partially defined. To better characterize the interactions involved, a yeast two-hybrid screen was conducted using the Z proteins from LASV and MOPV as a bait. The cellular proteins ITCH and WWP1, two members of the Nedd4 family of HECT E3 ubiquitin ligases, were found to bind the Z proteins of LASV, MOPV and other arenaviruses. The PPxY late-domain motif of the Z proteins is required for the interaction with ITCH, although the E3 ubiquitin-ligase activity of ITCH is not involved in Z ubiquitination. The silencing of ITCH was shown to affect the replication of the old-world mammarenaviruses LASV, MOPV, Lymphocytic choriomeningitis virus (LCMV) and to a lesser extent Lujo virus (LUJV). More precisely, ITCH was involved in the egress of virus-like particles and the release of infectious progeny viruses. Thus, ITCH constitutes a novel interactor of LASV and MOPV Z proteins that is involved in virus assembly and release.


2007 ◽  
Vol 81 (15) ◽  
pp. 7960-7973 ◽  
Author(s):  
Mahmoud M. Djavani ◽  
Oswald R. Crasta ◽  
Juan Carlos Zapata ◽  
Zhangjun Fei ◽  
Otto Folkerts ◽  
...  

ABSTRACT Acute arenavirus disease in primates, like Lassa hemorrhagic fever in humans, begins with flu-like symptoms and leads to death approximately 2 weeks after infection. Our goal was to identify molecular changes in blood that are related to disease progression. Rhesus macaques (Macaca mulatta) infected intravenously with a lethal dose of lymphocytic choriomeningitis virus (LCMV) provide a model for Lassa virus infection of humans. Blood samples taken before and during the course of infection were used to monitor gene expression changes that paralleled disease onset. Changes in blood showed major disruptions in eicosanoid, immune response, and hormone response pathways. Approximately 12% of host genes alter their expression after LCMV infection, and a subset of these genes can discriminate between virulent and nonvirulent LCMV infection. Major transcription changes have been given preliminary confirmation by quantitative PCR and protein studies and will be valuable candidates for future validation as biomarkers for arenavirus disease.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Umaru Bangura ◽  
Jacob Buanie ◽  
Joyce Lamin ◽  
Christopher Davis ◽  
Gédéon Ngiala Bongo ◽  
...  

Lassa fever is a viral hemorrhagic fever caused by the Lassa virus LASV, which was first isolated in the rodent Mastomys natalensis in 1974 in Kenema, Sierra Leone. As little is known about the abundance and the presence of LASV in rodents living in the Bo area, we carried out a small mammal longitudinal population survey. A standardized trapping session was performed in various habitats and seasons in six villages over two years (2014–2016) and samples collected were tested for arenavirus IgG and LASV. A Bayesian phylogenetic analysis was performed on sequences identified by PCR. A total of 1490 small mammals were collected, and 16 rodent species were identified, with M. natalensis (355, 24%) found to be the most prevalent species. Forty-one (2.8%) samples were IgG positive, and 31 of these were trapped in homes and 10 in surrounding vegetation. Twenty-nine of 41 seropositive rodents were M. natalensis. We detected four LASV by PCR in two villages, all found in M. natalensis. Phylogenetic analysis showed that the sequences were distributed within the Sierra Leonean clade within lineage IV, distinguishing a Bo sub-clade older than a Kenema sub-clade. Compared to other settings, we found a low abundance of M. natalensis and a low circulation of LASV in rodents in villages around Bo district.


2021 ◽  
pp. 190-194
Author(s):  
Sineida Berbert Ferreira ◽  
Rachel Berbert Ferreira ◽  
Afonso Cesar Neves Neto ◽  
Silvana Martins Caparroz Assef ◽  
Morton Scheinberg

Vitiligo is an autoimmune skin disease presenting with areas of depigmentation. Recent reports suggest that Janus kinase (JAK) inhibitors may be an effective therapy. In this case report, we show our experience with an adolescent patient with a long history of generalized and refractory vitiligo, for which treatment with topical tofacitinib, a JAK inhibitor, associated with phototherapy for 9 months, resulted in near complete repigmentation.


Vaccines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 138 ◽  
Author(s):  
Mantlo ◽  
Paessler ◽  
Huang

The family Arenaviridae contains several pathogens of major clinical importance. The Old World (OW) arenavirus Lassa virus is endemic in West Africa and is estimated to cause up to 300,000 infections each year. The New World (NW) arenaviruses Junín and Machupo periodically cause hemorrhagic fever outbreaks in South America. While these arenaviruses are highly pathogenic in humans, recent evidence indicates that pathogenic OW and NW arenaviruses interact with the host immune system differently, which may have differential impacts on viral pathogenesis. Severe Lassa fever cases are characterized by profound immunosuppression. In contrast, pathogenic NW arenavirus infections are accompanied by elevated levels of Type I interferon and pro-inflammatory cytokines. This review aims to summarize recent findings about interactions of these pathogenic arenaviruses with the innate immune machinery and the subsequent effects on adaptive immunity, which may inform the development of vaccines and therapeutics against arenavirus infections.


2021 ◽  
Author(s):  
Yang Liu ◽  
Jiao Guo ◽  
Junyuan Cao ◽  
Guangshun Zhang ◽  
Xiaoying Jia ◽  
...  

Lassa virus (LASV) belongs to the Old World Mammarenavirus genus (family Arenaviridae). At present, there are no approved drugs or vaccines specific for LASV. In this study, high-throughput screening of a botanical drug library was performed against LASV entry using a pseudotype virus bearing the LASV envelope glycoprotein complex (GPC). Two hit compounds, bergamottin and casticin, were identified as micromolar range inhibitors of LASV entry. A mechanistic study revealed that casticin inhibited LASV entry by blocking low pH-induced membrane fusion. Analysis of adaptive mutants demonstrated that the F446L mutation, located in the transmembrane domain of GP2, conferred resistance to casticin. Furthermore, casticin antiviral activity extends to the New World (NW) pathogenic mammarenaviruses, and mutation of the conserved F446 also conferred resistance to casticin in these viruses. Unlike casticin, bergamottin showed little effect on LASV GPC-mediated membrane fusion, instead inhibiting LASV entry by blocking endocytic trafficking. Notably, both compounds showed inhibitory effects on authentic lymphocytic choriomeningitis virus. Our study shows that both casticin and bergamottin are candidates for LASV therapy and that the conserved F446 in LASV GPC is important in drug resistance in mammarenaviruses. IMPORTANCE: Currently, there is no approved therapy to treat Lassa fever (LASF). Our goal was to identify potential candidate molecules for LASF therapy. Herein, we screened a botanical drug library and identified two compounds, casticin and bergamottin, that inhibited LASV entry via different mechanisms.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Deborah U. Ehichioya ◽  
Simon Dellicour ◽  
Meike Pahlmann ◽  
Toni Rieger ◽  
Lisa Oestereich ◽  
...  

ABSTRACT Lassa virus is genetically diverse with several lineages circulating in West Africa. This study aimed at describing the sequence variability of Lassa virus across Nigeria and inferring its spatiotemporal evolution. We sequenced and isolated 77 Lassa virus strains from 16 Nigerian states. The final data set, including previous works, comprised metadata and sequences of 219 unique strains sampled between 1969 and 2018 in 22 states. Most of this data originated from Lassa fever patients diagnosed at Irrua Specialist Teaching Hospital, Edo State, Nigeria. The majority of sequences clustered with the main Nigerian lineages II and III, while a few sequences formed a new cluster related to Lassa virus strains from Hylomyscus pamfi. Within lineages II and III, seven and five sublineages, respectively, were distinguishable. Phylogeographic analysis suggests an origin of lineage II in the southeastern part of the country around Ebonyi State and a main vector of dispersal toward the west across the Niger River, through Anambra, Kogi, Delta, and Edo into Ondo State. The frontline of virus dispersal appears to be in Ondo. Minor vectors are directed northeast toward Taraba and Adamawa and south toward Imo and Rivers. Lineage III might have spread from northern Plateau State into Kaduna, Nasarawa, Federal Capital Territory, and Bauchi. One sublineage moved south and crossed the Benue River into Benue State. This study provides a geographic mapping of lineages and phylogenetic clusters in Nigeria at a higher resolution. In addition, we estimated the direction and time frame of virus dispersal in the country. IMPORTANCE Lassa virus is the causative agent of Lassa fever, a viral hemorrhagic fever with a case fatality rate of approximately 30% in Africa. Previous studies disclosed a geographical pattern in the distribution of Lassa virus strains and a westward movement of the virus across West Africa during evolution. Our study provides a deeper understanding of the geography of genetic lineages and sublineages of the virus in Nigeria. In addition, we modeled how the virus spread in the country. This knowledge allows us to predict into which geographical areas the virus might spread in the future and prioritize areas for Lassa fever surveillance. Our study not only aimed to generate Lassa virus sequences from across Nigeria but also to isolate and conserve the respective viruses for future research. Both isolates and sequences are important for the development and evaluation of medical countermeasures to treat and prevent Lassa fever, such as diagnostics, therapeutics, and vaccines.


2008 ◽  
Vol 82 (21) ◽  
pp. 10768-10775 ◽  
Author(s):  
Ryan A. Larson ◽  
Dongcheng Dai ◽  
Virginia T. Hosack ◽  
Ying Tan ◽  
Tove’ C. Bolken ◽  
...  

ABSTRACT Several arenaviruses, including Lassa virus (LASV), are causative agents of hemorrhagic fever, for which effective therapeutic options are lacking. The LASV envelope glycoprotein (GP) gene was used to generate lentiviral pseudotypes to identify small-molecule inhibitors of viral entry. A benzimidazole derivative with potent antiviral activity was identified from a high-throughput screen utilizing this strategy. Subsequent lead optimization for antiviral activity identified a modified structure, ST-193, with a 50% inhibitory concentration (IC50) of 1.6 nM against LASV pseudotypes. ST-193 inhibited pseudotypes generated with other arenavirus envelopes as well, including the remaining four commonly associated with hemorrhagic fever (IC50s for Junín, Machupo, Guanarito, and Sabiá were in the 0.2 to 12 nM range) but exhibited no antiviral activity against pseudotypes incorporating either the GP from the LASV-related arenavirus lymphocytic choriomeningitis virus (LCMV) or the unrelated G protein from vesicular stomatitis virus, at concentrations of up to 10 μM. Determinants of ST-193 sensitivity were mapped through a combination of LASV-LCMV domain-swapping experiments, genetic selection of viral variants, and site-directed mutagenesis. Taken together, these studies demonstrate that sensitivity to ST-193 is dictated by a segment of about 30 amino acids within the GP2 subunit. This region includes the carboxy-terminal region of the ectodomain and the predicted transmembrane domain of the envelope protein, revealing a novel antiviral target within the arenavirus envelope GP.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Punya Shrivastava-Ranjan ◽  
Éric Bergeron ◽  
Ayan K. Chakrabarti ◽  
César G. Albariño ◽  
Mike Flint ◽  
...  

ABSTRACT Lassa virus (LASV) infection is a major public health concern due to high fatality rates and limited effective treatment. The interferon-stimulated gene cholesterol 25-hydroxylase ( CH25H ) encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC). 25HC is involved in regulating cholesterol biosynthesis and has recently been identified as a potent antiviral targeting enveloped virus entry. Here, we show a previously unrecognized role of CH25H in inhibiting LASV glycoprotein glycosylation and the production of infectious virus. Overexpression of CH25H or treatment with 25HC decreased LASV G1 glycoprotein N -glycan maturation and reduced the production of infectious LASV. Depletion of endogenous CH25H using small interfering RNA (siRNA) enhanced the levels of fully glycosylated G1 and increased infectious LASV production. Finally, LASV particles produced from 25HC-treated cells were found to be less infectious, to incorporate aberrantly glycosylated GP1 species, and to be defective in binding alpha-dystroglycan, an attachment and entry receptor. Our findings identify a novel role for CH25H in controlling LASV propagation and indicate that manipulation of the expression of CH25H or the administration of 25HC may be a useful anti-LASV therapy. IMPORTANCE Lassa fever is an acute viral hemorrhagic fever in humans caused by Lassa virus (LASV). No vaccine for LASV is currently available. Treatment is limited to the administration of ribavirin, which is only effective when given early in the course of illness. Cholesterol 25-hydroxylase ( CH25H ) is a recently identified interferon-stimulated gene (ISG); it encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC), which inhibits several viruses. Here, we identify a novel antiviral mechanism of 25HC that is dependent on inhibiting the glycosylation of Lassa virus (LASV) glycoprotein and reducing the infectivity of LASV as a means of suppressing viral replication. Since N-linked glycosylation is a critical feature of other enveloped-virus glycoproteins, 25HC may be a broad inhibitor of virus infectivity.


2021 ◽  
Vol 30 ◽  
pp. 096368972110337
Author(s):  
Xi Sun ◽  
Qiaomei He ◽  
Jun Yang ◽  
Andi Wang ◽  
Fang Zhang ◽  
...  

Acute graft-versus-host disease (aGVHD) is one of the most common complications of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Janus kinase (JAK) inhibitors are considered as reliable and promising agents for patients with aGVHD. The prophylactic and therapeutic effects of SHR0302, a novel JAK inhibitor, were evaluated in aGVHD mouse models. The overall survival (OS), progression-free survival (PFS), bodyweight of mice, GVHD scores were observed and recorded. The bone marrow and spleen samples of diseased model mice or peripheral blood of patients were analyzed. SHR0302 could prevent and reverse aGVHD in mouse models with preserving graft-versus-tumor effect. Functionally, SHR0302 improved the OS and PFS, restored bodyweight, reduced GVHD scores, and reduced immune cells infiltrated in target tissues. SHR0302 treatment also enhanced the hematopoietic reconstruction compared to the control group. Mechanistically, our results suggested that SHR0302 could inhibit the activation of T cells and modulate the differentiation of helper T (Th) cells by reducing Th1 and increasing regulatory T (Treg) cells. In addition, SHR0302 decreased the expression of chemokine receptor CXCR3 on donor T cells and the secretion of cytokines or chemokines including interleukin (IL)-6, interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), CXCL10, etc. thereby destroying the IFN-γ/CXCR3/CXCL10 axis which promotes the progression of GVHD. Besides, SHR0302 decreased the phosphorylation of JAK and its downstream STATs, AKT and ERK1/2, which ultimately regulated the activation, proliferation, and differentiation of lymphocytes. Experiments on primary cells from aGVHD patients also confirmed the results. In summary, our results indicated that JAK inhibitor SHR0302 might be used as a novel agent for patients with aGVHD.


Sign in / Sign up

Export Citation Format

Share Document