scholarly journals Phenotypic and Genotypic Properties of Fluoroquinolone-Resistant, qnr-Carrying Escherichia coli Isolated from the German Food Chain in 2017

2021 ◽  
Vol 9 (6) ◽  
pp. 1308
Author(s):  
Katharina Juraschek ◽  
Carlus Deneke ◽  
Silvia Schmoger ◽  
Mirjam Grobbel ◽  
Burkhard Malorny ◽  
...  

Fluoroquinolones are the highest priority, critically important antimicrobial agents. Resistance development can occur via different mechanisms, with plasmid-mediated quinolone resistance (PMQR) being prevalent in the livestock and food area. Especially, qnr genes, commonly located on mobile genetic elements, are major drivers for the spread of resistance determinants against fluoroquinolones. We investigated the prevalence and characteristics of qnr-positive Escherichia (E.) coli obtained from different monitoring programs in Germany in 2017. Furthermore, we aimed to evaluate commonalities of qnr-carrying plasmids in E. coli. We found qnr to be broadly spread over different livestock and food matrices, and to be present in various sequence types. The qnr-positive isolates were predominantly detected within selectively isolated ESBL (extended spectrum beta-lactamase)-producing E. coli, leading to a frequent association with other resistance genes, especially cephalosporin determinants. Furthermore, we found that qnr correlates with the presence of genes involved in resistance development against quaternary ammonium compounds (qac). The detection of additional point mutations in many isolates within the chromosomal QRDR region led to even higher MIC values against fluoroquinolones for the investigated E. coli. All of these attributes should be carefully taken into account in the risk assessment of qnr-carrying E. coli from livestock and food.

2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Surasak Puvabanditsin ◽  
Marianne Jacob ◽  
Maaz Jalil ◽  
Samhita Bhattarai ◽  
Qaiser Patel ◽  
...  

We report a case of a 12-day-old term neonate with extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli) meningitis and cerebral abscess. The patient received a 7-day course of antibiotics just few days prior to the infection. The incidence of infections from ESBL-producing E. coli is increasingly emerging. Antimicrobial agents must be vigilantly utilized to prevent the new highly resistant bacteria.


2013 ◽  
Vol 18 (31) ◽  
Author(s):  
A Potron ◽  
L Poirel ◽  
E Rondinaud ◽  
P Nordmann

OXA-48 beta-lactamase producers are emerging as an important threat mostly in the Mediterranean area. We report here the molecular epidemiology of a collection of OXA-48 beta-lactamase-positive enterobacterial isolates (n=107) recovered from European and north-African countries between January 2001 and December 2011. This collection included 67 Klebsiella pneumoniae, 24 Escherichia coli and 10 Enterobacter cloacae. Using the EUCAST breakpoints, ninety-eight isolates (91.6%) were of intermediate susceptibility or resistant to ertapenem, whereas 66% remained susceptible to imipenem. Seventy-five per cent of the isolates co-produced an extended-spectrum beta-lactamase, most frequently CTX-M-15 (77.5%). Susceptibility testing to non-beta-lactam antibiotics showed that colistin, tigecycline, amikacin, and fosfomycin remain active against most of the isolates. Multilocus sequence typing indicated that the most common sequence types (ST) were ST101 and ST38 for K. pneumoniae and E. coli, respectively. The blaOXA-48 gene was located on a 62 kb IncL/M plasmid in 92.5% of the isolates, indicating that a single plasmid was mainly responsible for the spread of that gene. In addition, this study identified multiple cases of importation of OXA-48 beta-lactamase producers at least in Europe, and spread of OXA-48 beta-lactamase producers giving rise to an endemic situation, at least in France.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1236
Author(s):  
Katharina Juraschek ◽  
Annemarie Käsbohrer ◽  
Burkhard Malorny ◽  
Stefan Schwarz ◽  
Diana Meemken ◽  
...  

Plasmids are mobile genetic elements, contributing to the spread of resistance determinants by horizontal gene transfer. Plasmid-mediated quinolone resistances (PMQRs) are important determinants able to decrease the antimicrobial susceptibility of bacteria against fluoroquinolones and quinolones. The PMQR gene qnrS1, especially, is broadly present in the livestock and food sector. Thus, it is of interest to understand the characteristics of plasmids able to carry and disseminate this determinant and therewith contribute to the resistance development against this class of high-priority, critically important antimicrobials. Therefore, we investigated all commensal Escherichia (E.) coli isolates, with reduced susceptibility to quinolones, recovered during the annual zoonosis monitoring 2017 in the pork and beef production chain in Germany (n = 2799). Through short-read whole-genome sequencing and bioinformatics analysis, the composition of the plasmids and factors involved in their occurrence were determined. We analysed the presence and structures of predominant plasmids carrying the PMQR qnrS1. This gene was most frequently located on IncX plasmids. Although the E. coli harbouring these IncX plasmids were highly diverse in their sequence types as well as their phenotypic resistance profiles, the IncX plasmids-carrying the qnrS1 gene were rather conserved. Thus, we only detected three distinct IncX plasmids carrying qnrS1 in the investigated isolates. The IncX plasmids were assigned either to IncX1 or to IncX3. All qnrS1-carrying IncX plasmids further harboured a β-lactamase gene (bla). In addition, all investigated IncX plasmids were transmissible. Overall, we found highly heterogenic E. coli harbouring conserved IncX plasmids as vehicles for the most prevalent qnr gene qnrS1. These IncX plasmids may play an important role in the dissemination of those two resistance determinants and their presence, transfer and co-selection properties require a deeper understanding for a thorough risk assessment.


2020 ◽  
Vol 8 (8) ◽  
pp. 1130
Author(s):  
Kaidi Telling ◽  
Age Brauer ◽  
Mailis Laht ◽  
Piret Kalmus ◽  
Karolin Toompere ◽  
...  

We have attempted to define the prevalence and risk factors of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-Enterobacteriaceae) carriage, and to characterize antimicrobial susceptibility, beta-lactamase genes, and major types of isolated strains in volunteers, with a specific focus on humans in contact with animals. Samples were collected from 207 volunteers (veterinarians, pig farmers, dog owners, etc.) and cultured on selective agar. Clonal relationships of the isolated ESBL-Enterobacteriaceae were determined by whole genome sequencing and multi-locus sequence typing. Beta-lactamases were detected using a homology search. Subjects filled in questionnaires analyzed by univariate and multiple logistic regression. Colonization with ESBL-Enterobacteriaceae was found in fecal samples of 14 individuals (6.8%; 95%CI: 3.75–11.09%). In multiple regression analysis, working as a pig farmer was a significant risk factor for ESBL-Enterobacteriaceae carriage (OR 4.8; 95%CI 1.2–19.1). The only species isolated was Escherichia coli that distributed into 11 sequence types. All ESBL-Enterobacteriaceae isolates were of CTX-M genotype, with the blaCTX-M-1 being the most prevalent and more common in pig farmers than in other groups. Despite the generally low prevalence of ESBL-Enterobacteriaceae in Estonia, the pig farmers may still pose a threat to transfer resistant microorganisms. The clinical relevance of predominant blaCTX-M-1 carrying E. coli is still unclear and needs further studies.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1480
Author(s):  
Nigatu Aklilu Atlaw ◽  
Shivaramu Keelara ◽  
Maria Correa ◽  
Derek Foster ◽  
Wondwossen Gebreyes ◽  
...  

Widespread dissemination of extended-spectrum beta-lactamase (ESBL) Escherichia coli (E. coli) in animals, retail meats, and patients has been reported worldwide except for limited information on small ruminants. Our study focused on the genotypic characterization of ESBL E. coli from healthy sheep and their abattoir environment in North Carolina, USA. A total of 113 ESBL E. coli isolates from sheep (n = 65) and their abattoir environment (n = 48) were subjected to whole-genome sequencing (WGS). Bioinformatics tools were used to analyze the WGS data. Multiple CTX-M-type beta-lactamase genes were detected, namely blaCTX-M-1, blaCTX-M-14, blaCTX-M-15, blaCTX-M-27, blaCTX-M-32, blaCTX-M-55, and blaCTX-M-65. Other beta-lactamase genes detected included blaCMY-2, blaTEM-1A/B/C, and blaCARB-2. In addition, antimicrobial resistance (AMR) genes and/or point mutations that confer resistance to quinolones, aminoglycosides, phenicols, tetracyclines, macrolides, lincosamides, and folate-pathway antagonists were identified. The majority of the detected plasmids were shared between isolates from sheep and the abattoir environment. Sequence types were more clustered around seasonal sampling but dispersed across sample types. In conclusion, our study reported wide dissemination of ESBL E. coli in sheep and the abattoir environment and associated AMR genes, point mutations, and plasmids. This is the first comprehensive AMR and WGS report on ESBL E. coli from sheep and abattoir environments in the United States.


2020 ◽  
Vol 19 (1) ◽  
pp. 23-35
Author(s):  
Jutamart Rodroo ◽  
◽  
Montira Intanon ◽  
Khwanchai Kreausukon ◽  
Aphisek Kongkaew ◽  
...  

Antimicrobial resistance has become a major global public health threat. Extended-spectrum beta-lactamase (ESBL) producing E. coli appears as an emergence cause of treatment failure and increase mortality due to limited available effective antimicrobial agents. This study was conducted to determine the occurrence and antimicrobial resistance of ESBL producing E. coli in broilers, farm workers and environment in broiler farms in Chiang Mai-Lamphun, Thailand. The prevalence of ESBL producing E. coli in the broiler farms was 60.4% (29/48). The prevalence of ESBL producing E. coli from boot swabs, farm worker’s rectal swabs, feed and water samples were 43.8%, 55.7%, 12.5% and 2.1%, respectively. All isolates showed susceptible to imipenem and, in contrast, resistant to ampicillin. The results demonstrated high antimicrobial resistant rate to streptomycin (94.3%), gentamicin (86.8%), tetracycline (77.4%), chloramphenicol (66.0%), nalidixic acid (58.5%), and sulfamethoxazole/trimethoprim (56.6%). High percentage (96.2%) of isolates was classified as multidrug resistance (MDR). Thirty-five antimicrobial resistance profiles were identified with AMP-GEN-SXT-NAL-TET-CHL-STR, AMP-GEN-SXT-TET-CHL-STR (14.3%) as the 2 most prevalent profiles. The common resistance profiles between farm workers and broilers was demonstrated. These findings are suggestive for possible transmission between poultry and humans in broiler farms, most likely via close contact. Antimicrobial usage should be strictly controlled together with increase awareness on hygiene practices in broiler farms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marita Vedovelli Cardozo ◽  
Apostolos Liakopoulos ◽  
Michael Brouwer ◽  
Arie Kant ◽  
Lucas José Luduvério Pizauro ◽  
...  

This study aimed to investigate the phylogenetic diversity and epidemiology of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae from chicken, chicken meat, and human clinical isolates in Sao Paolo, Brazil, and characterize their respective ESBL-encoding plasmids. Three hundred samples from chicken cloaca, chicken meat, and clinical isolates were phenotypically and genotypically assessed for ESBL resistance. Isolates were identified by MALDI TOF-MS and further characterized by MLST analysis and phylogenetic grouping. ESBL genes were characterized and their location was determined by I-Ceu-I-PFGE and Southern blot, conjugation, transformation, and PCR-based replicon typing experiments. Thirty-seven ESBL-producing isolates (28 E. coli and 9 K. pneumoniae) that were positive for the blaCTX–M–1 or blaCTX–M–2 gene groups were obtained. Two isolates were negative in the transformation assay, and the chromosomal location of the genes was deduced by Southern blot. The blaCTX–M genes identified were carried on plasmid replicon-types X1, HI2, N, FII-variants, I1 and R. The E. coli isolates belonged to nine sequence types, while the K. pneumoniae isolates belonged to four sequence types. The E. coli isolates belonged to phylotype classification groups A, B1, D, and F. This study demonstrated that isolates from cloacal swabs, chicken meat, and human feces had genetic diversity, with a high frequency of blaCTX–M–15 among chickens, chicken meat, and human feces. Thus, this reinforces the hypothesis that chickens, as well as their by-products, could be an important source of transmission for ESBL-producing pathogens to humans in South America.


2014 ◽  
Vol 81 (2) ◽  
pp. 648-657 ◽  
Author(s):  
Ivana Jamborova ◽  
Monika Dolejska ◽  
Jiri Vojtech ◽  
Sebastian Guenther ◽  
Raluca Uricariu ◽  
...  

ABSTRACTExtended-spectrum-beta-lactamase (ESBL)-producing, AmpC beta-lactamase-producing, and plasmid-mediated quinolone resistance (PMQR) gene-positive strains ofEscherichia coliwere investigated in wintering rooks (Corvus frugilegus) from eight European countries. Fecal samples (n= 1,073) from rooks wintering in the Czech Republic, France, Germany, Italy, Poland, Serbia, Spain, and Switzerland were examined. Resistant isolates obtained from selective cultivation were screened for ESBL, AmpC, and PMQR genes by PCR and sequencing. Pulsed-field gel electrophoresis and multilocus sequence typing were performed to reveal their clonal relatedness. In total, from the 1,073 samples, 152 (14%) cefotaxime-resistantE. coliisolates and 355 (33%)E. coliisolates with reduced susceptibility to ciprofloxacin were found. Eighty-two (54%) of these cefotaxime-resistantE. coliisolates carried the following ESBL genes:blaCTX-M-1(n= 39 isolates),blaCTX-M-15(n= 25),blaCTX-M-24(n= 4),blaTEM-52(n= 4),blaCTX-M-14(n= 2),blaCTX-M-55(n= 2),blaSHV-12(n= 2),blaCTX-M-8(n= 1),blaCTX-M-25(n= 1),blaCTX-M-28(n= 1), and an unspecified gene (n= 1). Forty-seven (31%) cefotaxime-resistantE. coliisolates carried theblaCMY-2AmpC beta-lactamase gene. Sixty-two (17%) of theE. coliisolates with reduced susceptibility to ciprofloxacin were positive for the PMQR genesqnrS1(n= 54),qnrB19(n= 4),qnrS1andqnrB19(n= 2),qnrS2(n= 1), andaac(6′)-Ib-cr(n= 1). Eleven isolates from the Czech Republic (n= 8) and Serbia (n= 3) were identified to be CTX-M-15-producingE. coliclone B2-O25b-ST131 isolates. Ninety-one different sequence types (STs) among 191 ESBL-producing, AmpC-producing, and PMQR gene-positiveE. coliisolates were determined, with ST58 (n= 15), ST10 (n= 14), and ST131 (n= 12) predominating. The widespread occurrence of highly diverse ESBL- and AmpC-producing and PMQR gene-positiveE. coliisolates, including the clinically important multiresistant ST69, ST95, ST117, ST131, and ST405 clones, was demonstrated in rooks wintering in various European countries.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elias Eger ◽  
Stefan E. Heiden ◽  
Katja Korolew ◽  
Claude Bayingana ◽  
Jules M. Ndoli ◽  
...  

Multi-drug resistant (MDR), gram-negative Enterobacteriaceae, such as Escherichia coli (E. coli) limit therapeutic options and increase morbidity, mortality, and treatment costs worldwide. They pose a serious burden on healthcare systems, especially in developing countries like Rwanda. Several studies have shown the effects caused by the global spread of extended-spectrum beta-lactamase (ESBL)-producing E. coli. However, limited data is available on transmission dynamics of these pathogens and the mobile elements they carry in the context of clinical and community locations in Sub-Saharan Africa. Here, we examined 120 ESBL-producing E. coli strains from patients hospitalized in the University Teaching Hospital of Butare (Rwanda), their attending caregivers as well as associated community members and livestock. Based on whole-genome analysis, the genetic diversification and phylogenetics were assessed. Moreover, the content of carried plasmids was characterized and investigated for putative transmission among strains, and for their potential role as drivers for the spread of antibiotic resistance. We show that among the 30 different sequence types (ST) detected were the pandemic clonal lineages ST131, ST648 and ST410, which combine high-level antimicrobial resistance with virulence. In addition to the frequently found resistance genes blaCTX–M–15, tet(34), and aph(6)-Id, we identified csg genes, which are required for curli fiber synthesis and thus biofilm formation. Numerous strains harbored multiple virulence-associated genes (VAGs) including pap (P fimbriae adhesion cluster), fim (type I fimbriae) and chu (Chu heme uptake system). Furthermore, we found phylogenetic relationships among strains from patients and their caregivers or related community members and animals, which indicates transmission of pathogens. Also, we demonstrated the presence and potential transfer of identical/similar ESBL-plasmids in different strains from the Rwandan setting and when compared to an external plasmid. This study highlights the circulation of clinically relevant, pathogenic ESBL-producing E. coli among patients, caregivers and the community in Rwanda. Combining antimicrobial resistance with virulence in addition to the putative exchange of mobile genetic elements among bacterial pathogens poses a significant risk around the world.


Sign in / Sign up

Export Citation Format

Share Document