scholarly journals Analysis of the Application Potential of Coffee Oil as an Ilmenite Flotation Collector

Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 505 ◽  
Author(s):  
Wang ◽  
Xiao ◽  
Ma ◽  
Li ◽  
Chen ◽  
...  

Coffee grounds are the most significant production waste in the coffee industry and contain about 15% coffee oil. Coffee oil is rich in fatty acids and polyphenols, which have great application potential in the flotation of oxidized minerals. In this study, coffee oil as a green flotation collector for ilmenite was investigated by micro-flotation, zeta potential measurement, and foam stability analysis. The results of zeta potential reveal that both coffee oil and MOH can be adsorbed on the ilmenite surface at pH 6.7, and the chemical adsorption mode is dominant. However, when the pH is 2.8, the adsorption capacity of coffee oil on the ilmenite surface is much larger than that of MOH. The pH value of the pulp has little effect on the foam properties in the coffee oil solution and has a great influence on the foaming performance and foam stability of the MOH solution. When coffee oil is used as a collector, the grade of TiO2 in ilmenite concentrate is increased from 21.68% to 46.83%, and the recovery is 90.22%, indicating that the potential of coffee oil in the application of ilmenite flotation is large.

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Yinghui XIE ◽  
Zhimmin DONG ◽  
Haoyan ZHANG ◽  
Runze ZHOU ◽  
Yunhai LIU ◽  
...  

The aim is collecting uranium from groundwater in which uranium mainly exists in negative species, the amidoxime-functionalized hydrothermal carbon (AO-HTC) was synthesized. From the results of N2 adsorption-desorption and SEM, AO-HTC is a small spherical surface; FT-IR and Elemental analysis showed that the amidoxime group was successfully grafted onto the surface of the material; Zeta-potential measurement showed that the amino nitrogen atom is protonated in the oxime group. The optimum pH value of AO-HTC for uranium adsorption is 6.0, and the adsorption equilibrium is reached within 80 min, which is in accordance with the pseudo-second order adsorption kinetic model. The adsorption of uranium by AO-HTC accords with the Langmuir isotherm adsorption model, and the single-layer saturated adsorption capacity is 254.13mg·g-1. The thermodynamic parameters calculated by the adsorption isotherm indicate that AO-HTC adsorption of uranium is a spontaneous endothermic chemical process and Carbonate ion, calcium ion and humic acid concentration have great influence on uranium adsorption. The experiments results show that AO-HTC has the potential to elimination of U(VI) from groundwater.


2010 ◽  
Vol 434-435 ◽  
pp. 275-277
Author(s):  
Wei Liang Liu ◽  
Shuo Qi Liu ◽  
Du Song Mao

Sr0.7Ca0.3TiO3 (SCT) substrates were prepared through aqueous tape casting. Properties of SCT slurries with and without ammonium polyacrylate (NH4PAA) dispersant were characterized by zeta potential. The zeta potential measurement result shows that the isoelectric point (IEP) of the powder changed obviously with the addition of the dispersant. The optimum pH value of the slurry is in the range of 9-10. The rheological test result indicates that the proper content of the dispersant is between 0.6 and 0.8 wt%. The effect of different plasticizer/binder ratio (R) on the properties of the green tapes was investigated. For 56 wt% solid loading, the tensile strength of the green tape reached 2.02 MPa and the breaking elongation rate was about 8%. SEM micrographs show that the microstructure of the green tapes is homogeneous and the microstructure of the sintered tapes is dense.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1426
Author(s):  
Franziska Kurz ◽  
Vera Reitberger ◽  
Claudia Hengst ◽  
Christine Bilke-Krause ◽  
Ulrich Kulozik ◽  
...  

It is widely accepted that protein-based particles can efficiently stabilize foams and emulsions. However, it is not fully elucidated which particle properties are decisive for the stabilization of air/water and oil/water interfaces. To unravel this correlation, selected properties of nano-sized soluble β-lactoglobulin particles were changed one at a time. Therefore, particles of (1) variable size but similar zeta potential and degree of cross-linking and (2) similar size but different further properties were produced by heat treatment under a specific combination of pH value and NaCl concentration and then analyzed for their interfacial behavior as well as foaming and emulsifying properties. On the one hand, it was found that the initial phase of protein adsorption at both the air/water and the oil/water interface was mainly influenced by the zeta potential, independent of the particle size. On the other hand, foam stability as resolved from the time-dependent evolution of mean bubble area negatively correlated with disulfide cross-linking, whereas emulsion stability in terms of oil droplet flocculation showed a positive correlation with disulfide cross-linking. In addition, flocculation was more pronounced for larger particles. Concluding from this, foam and emulsion stability are not linked to the same particle properties and, thus, explanatory approaches cannot be used interchangeably.


2011 ◽  
Vol 266 ◽  
pp. 26-29
Author(s):  
Shao Chun Li ◽  
Yong Juan Geng ◽  
Qi Long Zhang ◽  
Hui Yang

The dispersion behavior of the solid solution Li1.075Nb0.625Ti0.45O3 (LNT) in aqueous media was studied. Optimum dispersing conditions were investigated in terms of zeta potential, sedimentation, and rheology measurements. Zeta potential measurement showed that the isoelectric point (IEP) of the LNT particles was shifted from pH 3.7 to pH 2.6 after adsorption of PAA-NH4 and made the LNT surface more electronegative. Good agreement between zeta potential, sedimentation, and rheological test was found, which identified an optimum pH value of 10 and an optimum dispersant concentration of about 0.6 wt%. The green microstructures of the casting tapes bear a direct relationship to the state of dispersion of the slurries. The results showed that PAA-NH4 is a suitable dispersant for obtaining well-dispersed LNT slurries.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


Clay Minerals ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 853-861 ◽  
Author(s):  
E. E. Saka ◽  
C. Güler

AbstractIn this study, the influence of pH, electrolyte concentration and type of ionic species (such as LiCl, NaCl, KCl, RbCl, CsCl, CaCl2, AlCl3) on the electrokinetic properties (zeta potential and electrokinetic charge density) of montmorillonite has been quantified. The zeta potential of montmorillonite particles did not change significantly with change in pH. The valencies of the ions have proven to have a great influence on the electrokinetic behaviour of the suspension. There is a gradual decrease in the zeta potential (from —24 mV to —12 mV) with increase in monovalent electrolyte concentration (from 10-4 M to 10-1 M). At any monovalent electrolyte concentration, the magnitude of the zeta potential increased with the electrolytes in the order Li+ > Na+ > K+ > Rb+ > Cs+. The zeta potential of the montmorillonite minerals in CaCl2 solutions illustrated the same behaviour as the monovalent cations. Less negative values were obtained for the CaCl2 electrolyte (∼–10 mV) due to the greater valence of the ions. A sign reversal was observed at an AlCl3 concentration of 5 x 10-4 M, and, at greater concentrations, zeta potential values had a positive sign (∼20 mV).The electrokinetic charge density of montmorillonite showed similar trends of variation in mono and divalent electrolyte solutions. Up to concentrations of ∼10-3 M, it remained practically constant at ∼0.5 x 10-3Cm-2, while for greater electrolyte concentrations the negative charge produced more negative values (–16 x 10-3Cm-2). The electrokinetic charge density of montmorillonite particles was constant at low AlCl3 concentrations, but at certain concentrations it increased rapidly and changed sign to positive.


2015 ◽  
Vol 51 (4) ◽  
pp. 823-832 ◽  
Author(s):  
Francine Rodrigues Ianiski ◽  
Luciane Varini Laporta ◽  
Alexandre Machado Rubim ◽  
Cristiane Luchese

abstract A method to ensure that an analytical method will produce reliable and interpretable information about the sample must first be validated, making sure that the results can be trusted and traced. In this study, we propose to validate an analytical high performance liquid chromatography (HPLC) method for the quantitation of meloxicam loaded PEGylated nanocapsules(M-PEGNC). We performed a validation study, evaluated parameters including specificity, linearity, quantification limit, detection limit, accuracy, precision and robustness. PEGylated nanocapsules were prepared by interfacial deposition of preformed polymer, and the particle size, polydispersity index, zeta potential, pH value and encapsulation efficiency were characterized. The proposed HPLC method provides selective, linear results in the range of 1.0-40.0 μg/mL; quantification and detection limits were 1.78 μg/mL and 0.59 μg/mL, respectively; relative standard deviation for repeatability was 1.35% and intermediate precision was 0.41% and 0.61% for analyst 1 and analyst 2, respectively; accuracy between 99.23 and 101.79%; robustness between 97.13 and 98.45% for the quantification of M-PEGNC. Mean particle diameters were 261 ± 13 nm and 249 ± 20 nm, polydispersity index was 0.15 ± 0.07 and 0.17 ± 0.06, pH values were 5.0 ± 0.2 and 5.2 ± 0.1, and zeta-potential values were -37.9 ± 3.2 mV e -31.8 ± 2.8 mV for M-PEGNC and placebo(B-PEGNC), respectively. In conclusion, the proposed analytical method is suitable for the quality control of M-PEGNC. Moreover, suspensions showed monomodal size distributions and low polydispersity index indicating high homogeneity of formulations with narrow size distributions, and appropriate pH and zeta potential. The extraction process was efficient for release of meloxicam from nanostructured systems.


2018 ◽  
Vol 788 ◽  
pp. 83-88
Author(s):  
Oskars Leščinskis ◽  
Ruta Švinka ◽  
Visvaldis Švinka

Clays are materials consisting of clay minerals and non-clay minerals. Clay mineral fraction is considered to be a nanofraction. Clay minerals can be used for water purification and treatment. Description and characterization of 3 different Latvian clay nanosized minerals from 3 different geological periods (clay Liepa from Devonian period, clay Vadakste from Triassic period and clay Apriki from Quaternary period) as well as their adsorption capacity concerning organic compounds such as methyl orange and rhodamine B are summarized. Nanosized clay mineral particles were obtained using sedimentation method. Particle size distribution, zeta potential and FTIR spectra is given. The adsorption tests of above mentioned organic compounds were carried out in water solutions at 3 different pH values. The adsorption values were determined by means of UV-spectrophotometric technique. Zeta potential values for clay minerals Apriki, Liepa and Vadakste are -40.9 mV, -49.6 mV and -43.0 mV, respectively. FTIR spectra show similar tendencies for all 3 clay minerals. The best adsorption capacity concerning methyl orange and rhodamine B were in solutions with a pH value of 2, whereas at neutral and alkaline pH values adsorption in 24 hours was not observed.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 784
Author(s):  
Agnieszka Sidorowicz ◽  
Tomasz Szymański ◽  
Jakub Dalibor Rybka

Nowadays, nanostructures having tremendous chemical and physical properties are gaining attention in the biomedical industry. However, when they are prepared through classical methods (physical and chemical), they are often non-biocompatible and toxic. Considering the mentioned factors, in this research, organometallic silver nanostructures (OMAgNs) have been prepared by the green chemistry method using the acetone, methanol, and methanol-hexane-based extracts of the medicinally important plant Cichorium intybus. Secondary metabolites from C. intybus can be used as an alternative to synthetic reagents at an industrial scale to manufacture biosafe and economical nanostructures with enhanced physicochemical parameters. Prepared nanostructures were characterized using SEM, XRD, FTIR, TGA, UV, and zeta potential measurement. SEM analysis revealed different shapes of OMAgNs, prepared with various extracts. XRD analysis showed the crystallinity of the nanostructures. FTIR spectroscopy helped to identify groups of compounds present in the extracts and used for the OMAgNs synthesis. Out of the three tested OMAgNs, those prepared with methanol extract were selected due to the highest obtained yield and stability (highest negative zeta potential) and were tested as a cost-efficient and active agent to photodegrade organic pollutant, Brilliant Blue R, using energy from sunlight. A decrease in UV-VIS absorbance confirmed the rapid degradation of the dye.


Sign in / Sign up

Export Citation Format

Share Document