scholarly journals Novel Sophoridine Derivatives Bearing Phosphoramide Mustard Moiety Exhibit Potent Antitumor Activities In Vitro and In Vivo

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1960 ◽  
Author(s):  
Dongdong Li ◽  
Linlin Dai ◽  
Xiumei Zhao ◽  
Shuang Zhi ◽  
Hongsheng Shen ◽  
...  

Novel mustard functionalized sophoridine derivatives were synthesized and evaluated for their cytotoxicity against of a panel of various cancer cell lines. They were shown to be more sensitive to S180 and H22 tumor cells with IC50 values ranging from 1.01–3.65 μM, and distinctly were more cytotoxic to cancer cells than normal cell L929. In addition, compounds 7a, 7c, and 7e displayed moderate tumor suppression without apparent organ toxicity in vivo against mice bearing H22 liver tumors. Furthermore, they arrested tumor cells in the G1 phase and induced cellular apoptosis. Their potential binding modes with DNA-Top I complex have also been investigated.

2019 ◽  
pp. 1-8
Author(s):  
Saeed Ranjbar ◽  
Aria Momeni ◽  
Azadeh Reshadmanesh ◽  
Azita Fakhravar ◽  
Nafiseh Paydarnia ◽  
...  

Targeting tumor cells via multiple pathways promises the emergence of a new era in cancer therapy. Consisting of a cell-binding ligand and a cytotoxic moiety, cytolytic fusion proteins can selectively bind and kill target cells with minimal adverse effects. We designed a novel immunoproapoptotic fusion protein, p28-fur-GrB, composed of the cancer-specific azurin-derived cell penetrating peptide, p28, and a mutant version of human serine protease granzyme B. The two moieties were genetically fused by a furin sensitive linker, allowing in vivo cleavage and activation of the immunotoxin after cell entry. Synthesized coding gene of the recombinant protein was cloned and expressed in HEK293T cells, and nickel chromatography was applied for protein purification. After in vitro furin cleavage and primary analyses of SDS-PAGE, Western blotting, GrB activity and ELISA binding assay, the fusion protein was tested for its cytotoxicity on various breast cancer cell lines. Suppression of cell proliferation and viability was evaluated using the WST-1 assay. Furthermore, DNA fragmentation was measured as an indication of apoptotic effects of the fusion protein on treated cells. Based on our results, p28-fur-GrB was efficiently cleaved by furin and showed high GrB activity and binding affinity after cleavage. Following 72h of incubation with IC50 values of the fusion protein, significant cytotoxic effects of 80.6%, 77.1%, 74% and 69.6% were recorded for BT474, MCF7, SK-BR-3 and MDA-MB-231 tumor cells, respectively. Proliferative potential of MCF 10A normal cells was not affected by the treatment. Analysis of the rate of apoptosis in treated cells confirmed our cytotoxicity results. We concluded that p28-fur-GrB is a potent anti-tumor agent with high cytotoxicity against breast cancer cells.


2019 ◽  
Vol 29 (20) ◽  
pp. 126670 ◽  
Author(s):  
Qingpeng Wang ◽  
Yan Chen ◽  
Guoshuai Li ◽  
Yanna Zhao ◽  
Zhifang Liu ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1574-1574
Author(s):  
Efstathios Kastritis ◽  
Jana Jakubikova ◽  
Jake Delmore ◽  
Steffen Klippel ◽  
Douglas W. McMillin ◽  
...  

Abstract Abstract 1574 Cancer cells with stem cell-like features are a topic of intense research because their resistance to existing drugs is considered a culprit for relapses, even in patients with complete remission defined by clinical, biochemical and imaging parameters or by sensitive molecular techniques. Salinomycin, an antibacterial and coccidiodostatic ionophore, is reported (Cell 2009;138(4):645-59) to be >100-fold more potent against breast cancer cells with stem cell-like phenotype after mesenchymal transdifferentiation due to stable transfection with shRNA against CDH1 than against the parental cells. We evaluated whether salinomycin could also exhibit a similar activity against stem cell-like cells in multiple myeloma (MM). To establish a comparative reference for such potential activity, we first tested salinomycin (0-10 uM for up to 72hrs) against a panel of 15 MM cell lines and observed IC50 values <1 uM in 10/15 cell lines tested, including >80% reduction of tumor cell viability in 6/15 cell lines tested at 0.5 uM, i.e. levels lower than the IC50 values for in vitro activity of salinomycin against breast cancer cells with (HMLE-shCDH1, IC50 ∼1 uM) or without (HMLE-shControl, IC50 >>10 uM) stem cell-like features. CD138+ purified primary tumor cells from 3 MM patients responded to salinomycin with IC50 values (105, 332 and 750 nM, respectively) in the same range as MM cell lines. In vitro combinations with bortezomib, doxorubicin, melphalan, and dexamethasone showed overall no antagonism, while evidence of additive or even synergistic effect could be identified in certain dose ranges. Because MM cell lines and primary tumor cells responded concordantly to salinomycin and with higher sensitivity than breast cancer stem cell-like cells, we hypothesized that MM cells may in general be more responsive to salinomycin than other tumors. Since tumor-stromal interactions can increase the expression of transcriptional signatures of “stemness” in MM cells, we embarked on characterizing the anti-MM properties of salinomycin using compartment-specific bioluminescence imaging (CSBLI) assays. These showed that co-culture with stromal cells did not confer resistance to salinomycin in 5 MM cell lines (MM.1S, OCI-My5, KMS-11, KMS-18, NCI-H929) and in fact enhanced its activity against 4 of them. Side population (SP) cells, defined by their ability to efflux Hoechst stain, represent a stem cell-like population which was identified in MM cell lines and could represent the functional equivalent of the mesenchymally transdifferentiated breast cancer stem cell-like cells. We observed that salinomycin reduces the SP fraction of MM cell lines at doses >20 times lower than those required for in vitro effect against the bulk <<main population>> of the respective cell lines. Interestingly, the anti-SP effect of salinomycin was more pronounced in the presence of stroma, similarly to the CSBLI studies on the entire MM cell population and consistent with our prior observation that tumor-stroma interaction enhances transcriptional signatures of ≪stemness≫ in the tumor compartment. However, when we tested the in vivo anti-MM activity of salinomycin in an orthotopic model of i.v. injected Luc+ MM cells, no anti-MM activity (in terms of tumor burden decrease or overall survival prolongation) was observed at the maximum tolerated dose (1 mg/kg i.p. daily, which is consistent with most studies reported thus far in the literature). Ex vivo treatment of KMS-11 cells with salinomycin doses (100 nM for 72 hrs) selectively targeting SP cells was followed by s.c. injection of these cells or vehicle-treated controls in sublethallly irradiated SCID/NOD mice, but no statistically significant improvement in tumor burden or overall survival was observed. Our in vitro results indicate that salinomycin exhibits intriguing in vitro anti-MM activity, not only against SP cells but also against the bulk ≪main≫ MM cell population, even in the presence of stromal support. In contrast, the in vivo activity of salinomycin is compromised by side effects in the orthotopic model of MM lesions, while short term ex vivo exposure of tumor cells is conceivably insufficient to eradicate clonogenic cells and lead to appreciable delay in tumor growth in vivo. Our studies point to intriguing features as well as notable challenges that have to overcome before salinomycin or other more selective agents of this class can be safely tested in clinical trials in MM. Disclosures: McMillin: Axios Biosciences: Equity Ownership. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Mitsiades:Millennium: Consultancy, Honoraria; Novartis Pharmaceuticals: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Merck &Co.: Consultancy, Honoraria; Kosan Pharmaceuticals: Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; Centrocor: Consultancy, Honoraria; PharmaMar: Patents & Royalties; OSI Pharmaceuticals: Research Funding; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono: Research Funding; Sunesis: Research Funding; Gloucester Pharmaceuticals: Research Funding.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Author(s):  
Shangfei Wei ◽  
Tianming Zhao ◽  
Jie Wang ◽  
Xin Zhai

: Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structureactivity relationships, ligand-protein interactions and in vitro and in vivo activity. Additionally, challenges as well as opportunities are presented.


2019 ◽  
Vol 16 (6) ◽  
pp. 462-467
Author(s):  
Songtao Li ◽  
Hongling Zhao ◽  
Zhifeng Yin ◽  
Shuhua Deng ◽  
Yang Gao ◽  
...  

A series of new phenanthrene-based tylophorine derivatives (PBTs) were synthesized in good yield and their structures were characterized by 1H-NMR spectroscopy and ESI MS. In vitro antitumor activity of these compounds against five human carcinoma cell lines, including HCT116 (colorectal), BGC-823 (gastric), HepG-2 (hepatic), Hela (cervical) and H460 (lung) cells, was evaluated by MTT assay. Among these PBTs, compound 6b showed the highest antitumor activities against HCT116 and HepG-2 cell lines with IC50 values of 6.1 and 6.4 μM, respectively, which were comparable to that of adriamycin hydrochloride. The structure-activity relationship of these compounds was also discussed based on the results of their antitumor activity.


2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


Sign in / Sign up

Export Citation Format

Share Document