scholarly journals Astaxanthin-Loaded Nanostructured Lipid Carriers for Preservation of Antioxidant Activity

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2601 ◽  
Author(s):  
Violeta Rodriguez-Ruiz ◽  
José Salatti-Dorado ◽  
Abolfazl Barzegari ◽  
Alba Nicolas-Boluda ◽  
Amel Houaoui ◽  
...  

Astaxanthin is a xanthophyll carotenoid showing efficient scavenging ability and represents an interesting candidate in the development of new therapies for preventing and treating oxidative stress-related pathologies. However, its high lipophilicity and thermolability often limits its antioxidant efficacy in human applications. Here, we developed a formulation of lipid carriers to protect astaxanthin’s antioxidant activity. The synthesis of natural astaxanthin-loaded nanostructured lipid carriers using a green process with sunflower oil as liquid lipid is presented. Their antioxidant activity was measured by α-Tocopherol Equivalent Antioxidant Capacity assay and was compared to those of both natural astaxanthin and α-tocopherol. Characterizations by dynamic light scattering, atomic force microscopy, and scattering electron microscopy techniques were carried out and showed spherical and surface negative charged particles with z-average and polydispersity values of ~60 nm and ~0.3, respectively. Astaxanthin loading was also investigated showing an astaxanthin recovery of more than 90% after synthesis of nanostructured lipid carriers. These results demonstrate the capability of the formulation to stabilize astaxanthin molecule and preserve and enhance the antioxidant activity.

2012 ◽  
Vol 20 (5) ◽  
pp. 46-51

Microscopy Today congratulates the third annual group of Innovation Award winners. The ten innovations described below move several microscopy techniques forward: atomic force microscopy, transmission electron microscopy, light microscopy, scanning probe microscopy, electron microscopy, and analytical microscopy. These innovations will make imaging and analysis more powerful, more flexible, more productive, and easier to accomplish.


2017 ◽  
Vol 68 (11) ◽  
pp. 2700-2703 ◽  
Author(s):  
Kamel Earar ◽  
Vasile Iulian Antoniac ◽  
Sorana Baciu ◽  
Simion Bran ◽  
Florin Onisor ◽  
...  

This study examined and compared surface of human dentine after acidic etching with hydrogen peroxide, phosphoric acid liquid and gel. Surface demineralization of dentin is necessary for a strong bond of adhesive at dental surface. Split human teeth were used. After application of mentioned substances at dentin level measures of the contact angle and surface morphology were employed. Surface morphology was analyzed with the help of scanning electron microscopy and atomic force microscopy. Liquid phosphoric acid yielded highest demineralization showing better hydrophobicity than the rest, thus having more contact surface. Surface roughness are less evident and formed surface micropores of 4 �m remained open after wash and air dry providing better adhesive canalicular penetration and subsequent bond.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


2019 ◽  
Vol 10 ◽  
pp. 617-633 ◽  
Author(s):  
Aaron Mascaro ◽  
Yoichi Miyahara ◽  
Tyler Enright ◽  
Omur E Dagdeviren ◽  
Peter Grütter

Recently, there have been a number of variations of electrostatic force microscopy (EFM) that allow for the measurement of time-varying forces arising from phenomena such as ion transport in battery materials or charge separation in photovoltaic systems. These forces reveal information about dynamic processes happening over nanometer length scales due to the nanometer-sized probe tips used in atomic force microscopy. Here, we review in detail several time-resolved EFM techniques based on non-contact atomic force microscopy, elaborating on their specific limitations and challenges. We also introduce a new experimental technique that can resolve time-varying signals well below the oscillation period of the cantilever and compare and contrast it with those previously established.


1995 ◽  
Vol 378 ◽  
Author(s):  
G. Kissinger ◽  
T. Morgenstern ◽  
G. Morgenstern ◽  
H. B. Erzgräber ◽  
H. Richter

AbstractStepwise equilibrated graded GexSii-x (x≤0.2) buffers with threading dislocation densities between 102 and 103 cm−2 on the whole area of 4 inch silicon wafers were grown and studied by transmission electron microscopy, defect etching, atomic force microscopy and photoluminescence spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document