scholarly journals Antiviral Activity of Uridine Derivatives of 2-Deoxy Sugars against Tick-Borne Encephalitis Virus

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1129 ◽  
Author(s):  
Ewelina Krol ◽  
Ilona Wandzik ◽  
Gabriela Brzuska ◽  
Luděk Eyer ◽  
Daniel Růžek ◽  
...  

Tick-borne encephalitis virus (TBEV) is a causative agent of tick-borne encephalitis (TBE), one of the most important human infections involving the central nervous system. Although effective vaccines are available on the market, they are recommended only in endemic areas. Despite many attempts, there are still no specific antiviral therapies for TBEV treatment. Previously, we synthesized a series of uridine derivatives of 2-deoxy sugars and proved that some compounds show antiviral activity against viruses from the Flaviviridae and Orthomyxoviridae families targeting the late steps of the N-glycosylation process, affecting the maturation of viral proteins. In this study, we evaluated a series of uridine derivatives of 2-deoxy sugars for their antiviral properties against two strains of the tick-borne encephalitis virus; the highly virulent TBEV strain Hypr and the less virulent strain Neudoerfl. Four compounds (2, 4, 10, and 11) showed significant anti-TBEV activity with IC50 values ranging from 1.4 to 10.2 µM and low cytotoxicity. The obtained results indicate that glycosylation inhibitors, which may interact with glycosylated membrane TBEV E and prM proteins, might be promising candidates for future antiviral therapies against TBEV.

2017 ◽  
Vol 2 (5) ◽  
pp. 93-99
Author(s):  
Иннокентий Соловаров ◽  
Innokentiy Solovarov ◽  
Максим Хаснатинов ◽  
Maksim Khasnatinov ◽  
Александр Ляпунов ◽  
...  

2020 ◽  
Vol 28 ◽  
pp. 204020662094346
Author(s):  
Evgenia V Dueva ◽  
Ksenia K Tuchynskaya ◽  
Liubov I Kozlovskaya ◽  
Dmitry I Osolodkin ◽  
Kseniya N Sedenkova ◽  
...  

Tick-borne encephalitis is an important human arbovirus neuroinfection spread across the Northern Eurasia. Inhibitors of tick-borne encephalitis virus (TBEV) strain Absettarov, presumably targeting E protein n-octyl-β-d-glucoside (β-OG) pocket, were reported earlier. In this work, these inhibitors were tested in vitro against seven strains representing three main TBEV subtypes. The most potent compound, 2-[(2-methyl-1-oxido-5,6,7,8-tetrahydroquinazolin-4-yl)amino]-phenol, showed EC50 values lower than 22 µM against all the tested strains. Nevertheless, EC50 values for virus samples of certain strains demonstrated a substantial variation, which appeared to be consistent with the presence of E protein not only in infectious virions, but also in non-infectious and immature virus particles, protein aggregates, and membrane complexes.


2021 ◽  
Vol 6 (1) ◽  
pp. 55-59
Author(s):  
M. A. Khasnatinov ◽  
T. G. Gornostai ◽  
I. S. Solovarov ◽  
M. S. Polyakova ◽  
G. A. Danchinova ◽  
...  

Background. Tick-borne encephalitis virus is dangerous and widespread pathogen that is transmitted to humans through the bites of hard ticks. Wild fungi, such as xylotrophic basidiomycetes, are widely used in traditional medicine to treat the infectious diseases and are promising natural sources of new antiviral agents. It was previously shown that aqueous extracts from the mycelium of the Inonotus rheades (Pers.) P. Karst. (1882) fungus exhibit significant antiviral activity against tick-borne encephalitis virus, however, the mechanisms of this activity remain unclear.Aim. To analyze the relationship between the virucidal properties of I. rheades extract and the substrate on which the cultivation was carried out.Materials and methods. The mycelium was grown either in a standard liquid medium with wort or on wooden disks from birch. Extracts of water-soluble polysaccharides were prepared from both mycelium samples. The concentration of infectious tick-borne encephalitis virus was determined using the method of titration of plaque-forming components (PFU). Approximately 30 000 PFU of tick-borne encephalitis virus was mixed with an equal volume of corresponding I. rheades extract at concentration of 8 mg/mL and incubated for 30 min at 37 °C. Afterwards, the residual infectivity of tick-borne encephalitis virus was determined using the identical virus sample incubated with sterile water as a reference.Results. It was found that treatment of tick-borne encephalitis virus with extracts from I. rheades mycelium resulted in inhibition of the infectivity of the virus in the cell culture. However, the same strain of I. rheades, grown on medium with wort, did not exhibit antiviral properties.Conclusions. Virucidal substances are likely to be not the main metabolites of the mycelium of I. rheades, but are rather metabolized wood polysaccharides. Further research is needed to more accurately identify the active ingredients and assess their antiviral activity.


2017 ◽  
Vol 62 (1) ◽  
pp. 30-35 ◽  
Author(s):  
N. M. Pukhovskaya ◽  
O. V. Morozova ◽  
N. B. Belozerova ◽  
S. V. Bakhmetyeva ◽  
N. P. Vysochina ◽  
...  

The tick-borne encephalitis virus (TBEV) strain Lazo MP36 was isolated from the pool of mosquitoes Aedes vexans collected in Lazo region of Khabarovsk territory in August 2014. Phylogenetic analysis of the strain Lazo MP36 complete genome (GenBank accession number KT001073) revealed its correspondence to the TBEV Far Eastern subtype and differences from the following strains: 1) from ticks Ixodes persulcatus P. Schulze, 1930 [vaccine strain 205 (JX498939) and strains Khekhtzir 1230 (KF880805), Chichagovka (KP844724), Birobidzhan 1354 (KF880805) isolated in 2012-2013]; 2) from mosquitoes [strain Malyshevo (KJ744034) isolated in 1978 from Aedes vexans nipponii in Khabarovsk territory; strain Sakhalin 6-11 isolated from the pool of mosquitoes in 2011 (KF826916)]; 3) from human brain [vaccine strain Sofjin (JN229223), Glubinnoe/2004(DQ862460). Kavalerovo (DQ862460), Svetlogorie (DQ862460)]. The fusion peptide necessary for flavivirus entry to cells of the three TBEV strains isolated from mosquitoes (Lazo MP36, Malyshevo and Sakhalin 6-11) has the canonical structure 98-DRGWGNHCGLFGKGSI-113 for the tick-borne flaviviruses. Amino acid transition H104G typical for the mosquito-borne flaviviruses was not found. Structures of 5’- and 3’-untranslated (UTR) regions of the TBEV strains from mosquitoes were 85-98% homologous to the TBEV strains of all subtypes without recombination with mosquito-borne flaviviruses found in the Far East of Russia. Secondary structures of 5’- and 3'-UTR as well as cyclization sequences (CS) of types a and B are highly homologous for all TBEV isolates independently of the biological hosts and vectors. similarity of the genomes of the TBEV isolates from mosquitoes, ticks and patients as well as pathogenicity of the isolates for new-borne laboratory mice and tissue cultures might suggest a possible role of mosquitoes in the TBEV circulation in natural foci as an accidental or additional virus carrier.


2020 ◽  
Vol 13 (12) ◽  
pp. 460
Author(s):  
Gabriela Brzuska ◽  
Gabriela Pastuch-Gawolek ◽  
Monika Krawczyk ◽  
Boguslaw Szewczyk ◽  
Ewelina Krol

Tick-borne encephalitis virus (TBEV) transmitted by ticks is a pathogen of great medical importance. As still no effective antiviral treatment is available, in the present study, a series of uridine glycoconjugates containing amide or/and 1,2,3-triazole moiety in the linker structure was synthesized and evaluated for the antiviral activity against two strains of TBEV: a highly virulent Hypr strain and less virulent Neudoerfl strain, using standardized previously in vitro assays. Our data have shown that four compounds from the series (18–21) possess strong activity against both TBEV strains. The half maximal inhibitory concentration (IC50) values of compounds 18–21 were between 15.1 and 3.7 μM depending on the virus strain, which along with low cytotoxicity resulted in high values of the selectivity index (SI). The obtained results suggest that these compounds may be promising candidates for further development of new therapies against flaviviruses.


2013 ◽  
Vol 94 (9) ◽  
pp. 2129-2139 ◽  
Author(s):  
Manfred Weidmann ◽  
Stefan Frey ◽  
Caio C. M. Freire ◽  
Sandra Essbauer ◽  
Daniel Růžek ◽  
...  

In order to obtain a better understanding of tick-borne encephalitis virus (TBEV) strain movements in central Europe the E gene sequences of 102 TBEV strains collected from 1953 to 2011 at 38 sites in the Czech Republic, Slovakia, Austria and Germany were determined. Bayesian analysis suggests a 350-year history of evolution and spread in central Europe of two main lineages, A and B. In contrast to the east to west spread at the Eurasian continent level, local central European spreading patterns suggest historic west to east spread followed by more recent east to west spread. The phylogenetic and network analyses indicate TBEV ingressions from the Czech Republic and Slovakia into Germany via landscape features (Danube river system), biogenic factors (birds, red deer) and anthropogenic factors. The identification of endemic foci showing local genetic diversity is of paramount importance to the field as these will be a prerequisite for in-depth analysis of focal TBEV maintenance and long-distance TBEV spread.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Richard Lindqvist ◽  
Ebba Rosendal ◽  
Elvira Weber ◽  
Naveed Asghar ◽  
Sarah Schreier ◽  
...  

Abstract Background Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection range from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known; however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection. Method Mice were infected with different TBEV strains, and high virulent and low virulent TBEV strains were chosen. Sequence alignment identified differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes, mouse embryonic fibroblasts, and in vivo. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN® and Encepur® or combined were evaluated. Results We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Torö. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild-type (WT) Torö and this correlated with enhanced pathogenicity and higher levels of viral RNA in vivo. The E protein is also the major target of neutralizing antibodies; thus, genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN® and Encepur®. As TBEV vaccine breakthroughs have occurred in Europe, we chose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains. Conclusions Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T, and A463S enhanced Torö infection of neurons as well as pathogenesis and viral replication in vivo; furthermore, we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals.


2018 ◽  
Vol 3 (4) ◽  
pp. 42-46
Author(s):  
G. N. Leonova

The subdivision of the viral population into subtypes and clusters based on the molecular genetic characteristics of the tick-borne  encephalitis virus (TBEV) strains predetermines not only the  differences in the biological properties of these strains, but also their different responses to specific antibodies in persons vaccinated against TBE.The aim of the present study is to show the differences in biological properties on the model of two strains of Far Eastern TBEV subtype  belonging to different clusters and to substantiate the need for a  personalized approach to the vaccine prophylaxis of tick-borne encephalitis.Results. Two strains of TBEV were used in the studies. On the basis of full genome sequencing the Dal’negorsk strain (FJ402886,  GenBank) is referred to the typical representative of Sofjin-like, and  Primorye-437 (JQ825162, GenBank) – to Oshima-like TBEV strains  of the Far Eastern subtype.The experiment shows the levels of  specific antibodies capable of neutralizing virulence strains of tick- borne encephalitis virus. Low antibody titers (1:100 and 1:400) can  neutralize only a low dose of a non-virulent strain of tick-borne  encephalitis virus. Reliable protection against the disease of people infected with virulent strains of the TBEV can provide only a  high level of specific antibodies.Conclusion. If the level of specific antibodies of IgG is 1:400 or lower, the vaccination course should be continued, at a titer of  antibodies above 1:400, revaccination can be postponed subject to  annual monitoring of specific immunity parameters in the pre-epidemic TBE season.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 902
Author(s):  
Renata Helmová ◽  
Václav Hönig ◽  
Hana Tykalová ◽  
Martin Palus ◽  
Lesley Bell-Sakyi ◽  
...  

A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially subcultured in the mammalian porcine kidney stable (PS) and Ixodes ricinus tick (IRE/CTVM19) cell lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes were identified in different genomic regions. Furthermore, different sequential variants were revealed to co-exist within one sample as quasispecies. Interestingly, the above-mentioned nucleotide changes found within the whole genome sequences of the new variants were present alongside the nucleotide sequence of the parental strain, which was represented as a minority quasispecies. These observations further imply that TBEV exists as a heterogeneous population that contains virus variants pre-adapted to reproduction in different environments, probably enabling virus survival in ticks and mammals.


2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Ludek Eyer ◽  
Hirofumi Kondo ◽  
Darina Zouharova ◽  
Minato Hirano ◽  
James J. Valdés ◽  
...  

ABSTRACT Tick-borne encephalitis virus (TBEV) causes a severe and potentially fatal neuroinfection in humans. Despite its high medical relevance, no specific antiviral therapy is currently available. Here we demonstrate that treatment with a nucleoside analog, 7-deaza-2′-C-methyladenosine (7-deaza-2′-CMA), substantially improved disease outcomes, increased survival, and reduced signs of neuroinfection and viral titers in the brains of mice infected with a lethal dose of TBEV. To investigate the mechanism of action of 7-deaza-2′-CMA, two drug-resistant TBEV clones were generated and characterized. The two clones shared a signature amino acid substitution, S603T, in the viral NS5 RNA-dependent RNA polymerase (RdRp) domain. This mutation conferred resistance to various 2′-C-methylated nucleoside derivatives, but no cross-resistance was seen with other nucleoside analogs, such as 4′-C-azidocytidine and 2′-deoxy-2′-beta-hydroxy-4′-azidocytidine (RO-9187). All-atom molecular dynamics simulations revealed that the S603T RdRp mutant repels a water molecule that coordinates the position of a metal ion cofactor as 2′-C-methylated nucleoside analogs approach the active site. To investigate its phenotype, the S603T mutation was introduced into a recombinant TBEV strain (Oshima-IC) generated from an infectious cDNA clone and into a TBEV replicon that expresses a reporter luciferase gene (Oshima-REP-luc2A). The mutants were replication impaired, showing reduced growth and a small plaque size in mammalian cell culture and reduced levels of neuroinvasiveness and neurovirulence in rodent models. These results indicate that TBEV resistance to 2′-C-methylated nucleoside inhibitors is conferred by a single conservative mutation that causes a subtle atomic effect within the active site of the viral NS5 RdRp and is associated with strong attenuation of the virus. IMPORTANCE This study found that the nucleoside analog 7-deaza-2′-C-methyladenosine (7-deaza-2′-CMA) has high antiviral activity against tick-borne encephalitis virus (TBEV), a pathogen that causes severe human neuroinfections in large areas of Europe and Asia and for which there is currently no specific therapy. Treating mice infected with a lethal dose of TBEV with 7-deaza-2′-CMA resulted in significantly higher survival rates and reduced the severity of neurological signs of the disease. Thus, this compound shows promise for further development as an anti-TBEV drug. It is important to generate drug-resistant mutants to understand how the drug works and to develop guidelines for patient treatment. We generated TBEV mutants that were resistant not only to 7-deaza-2′-CMA but also to a broad range of other 2′-C-methylated antiviral medications. Our findings suggest that combination therapy may be used to improve treatment and reduce the emergence of drug-resistant viruses during nucleoside analog therapy for TBEV infection.


Sign in / Sign up

Export Citation Format

Share Document