scholarly journals (3β,16α)-3,16-Dihydroxypregn-5-en-20-one from the Twigs of Euonymus alatus (Thunb.) Sieb. Exerts Anti-Inflammatory Effects in LPS-Stimulated RAW-264.7 Macrophages

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3848 ◽  
Author(s):  
Seulah Lee ◽  
Dahae Lee ◽  
Su Cheol Baek ◽  
Mun Seok Jo ◽  
Ki Sung Kang ◽  
...  

To discover new pharmacologically active natural products, here, we performed the phytochemical analysis of a Korean medicinal plant. Euonymus alatus (Thunb.) Sieb. is a traditional medicinal plant that has been used as a remedy for various diseases in Asian countries. In particular, the cork cambium on the twigs of E. alatus has been used to treat dysmenorrhea, tumors, diabetes, and wound. Phytochemical analysis of the methanolic extract of E. alatus twigs led to the isolation of a sterol, which was identified as (3β,16α)-3,16-dihydroxypregn-5-en-20-one (1) by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray ionization mass spectrometry. The stereochemistry of 1 was established with nuclear Overhauser effect spectroscopy (NOESY) analysis and comparison of electronic circular dichroism (ECD) data. To the best of our knowledge, the isolation of compound 1 from nature is first reported here, as well as the complete and revised NMR data assignment of 1. In lipopolysaccharide (LPS)-stimulated RAW-264.7 macrophages, compound 1 significantly inhibited nitric oxide (NO) production at an IC50 value of 12.54 ± 0.05 μM as well as the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, the pre-treatment with compound 1 attenuated the LPS-induced phosphorylation of nuclear factor kappa B (NF-κB) p65 through the inhibition of the phosphorylation of IκB kinase alpha (IKKα), IKKβ, and inhibitor of kappa B alpha (IκBα). Compound 1 also inhibited the LPS-induced phosphorylation of p38, c-Jun NH2-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Taken together, compound 1 may serve as an anti-inflammatory constituent of E. alatus twigs and its anti-inflammatory property is thought to be associated with the inhibition of NO production via suppression of iNOS and COX-2 expression through inhibition of IKKα/β, I-κBα and NF-κB p65 activation and downregulation of p38, JNK, and ERK mitogen-activated protein kinase signal pathways in RAW 264.7 macrophages. These findings also provide experimental evidence that compound 1 identified from E. alatus twigs could be a candidate for an anti-inflammatory agent.

2021 ◽  
Vol 22 (15) ◽  
pp. 8120
Author(s):  
Dahae Lee ◽  
Seoung Rak Lee ◽  
Ki Sung Kang ◽  
Ki Hyun Kim

The fruits of the mulberry tree (Morus alba L.), known as white mulberry, have been consumed in various forms, including tea, beverages, and desserts, worldwide. As part of an ongoing study to discover bioactive compounds from M. alba fruits, the anti-inflammatory effect of compounds from M. alba were evaluated in lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 macrophages. Phytochemical analysis of the ethanol extract of the M. alba fruits led to the isolation of 22 compounds. Among the isolated compounds, to the best of our knowledge, compounds 1, 3, 5, 7, 11, 12, and 14–22 were identified from M. alba fruits for the first time in this study. Inhibitory effects of 22 compounds on the production of the nitric oxide (NO) known as a proinflammatory mediator in LPS-stimulated RAW 264.7 macrophages were evaluated using NO assays. Western blot analysis was performed to evaluate the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5). We evaluated whether the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5) following LPS stimulation in RAW 264.7 macrophages occurred because of phosphorylation of IκB kinase alpha (IKKα), IκB kinase beta (IKKβ), inhibitor of kappa B alpha (IκBα), nuclear factor kappa B (NF-κB) and activations of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Cyclo(L-Pro-L-Val) (5) significantly suppressed phosphorylations of IKKα, IKKβ, IκBα, and NF-κB and activations of iNOS and COX-2 in a concentration-dependent manner. Taken together, these results indicate that cyclo(L-Pro-L-Val) (5) can be considered a potential therapeutic agent for the treatment of inflammation-associated disorders.


2021 ◽  
Vol 22 (13) ◽  
pp. 6894
Author(s):  
Mei Tong He ◽  
Hye Sook Park ◽  
Young Sil Kim ◽  
Ah Young Lee ◽  
Eun Ju Cho

Recently, adipose-derived stem cells (ADSCs) are considered to be ideal for application in cell therapy or tissue regeneration, mainly due to their wide availability and easy access. In this study, we examined the anti-inflammatory effects of membrane-free stem cell extract (MFSC-Ex) derived from ADSCs against lipopolysaccharide (LPS)/interferon-gamma (IFN-γ) on RAW 264.7 macrophage cells. Exposure of RAW macrophages to LPS and IFN-γ stimuli induced high levels of nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) production. However, pretreatment with MFSC-Ex inhibited LPS/IFN-γ-induced these pro-inflammatory mediators. To clarify the molecular mechanisms underlying the anti-inflammatory property of MFSC-Ex, we analyzed nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) protein expressions by Western blotting. Our study showed that treatment of MFSC-Ex significantly down-regulated inducible nitric oxide synthase (iNOS) and COX-2 protein expressions. Furthermore, phosphorylation of extracellular signal-regulated kinase (ERK) and p38 was also blocked by treatment with MFSC-Ex, indicating that inhibitory effect of MFSC-Ex on MAPK signaling cascade may attribute to inactivation of NF-κB. From these findings, we suggest that MFSC-Ex exert anti-inflammatory activities, which suppressed LPS/IFN-γ-induced production of NO, COX-2 and PGE2 by regulation of NF-κB and MAPK signaling pathway in RAW 264.7 macrophages. In conclusion, MFSC-Ex might provide a new therapeutic opportunity to treatment of inflammatory-related diseases.


2010 ◽  
Vol 299 (2) ◽  
pp. L184-L191 ◽  
Author(s):  
Gu Seob Roh ◽  
Chin-ok Yi ◽  
Yu Ji Cho ◽  
Byeong Tak Jeon ◽  
Irina Tsoy Nizamudtinova ◽  
...  

Chronic airway inflammation is a characteristic feature of destructive cigarette smoking (CS)-induced lung disease, particularly in patients with emphysema. Celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, is widely used to treat inflammation. However, the exact mechanisms underlying this drug's anti-inflammatory effects have not yet been determined in pulmonary emphysema. Here, we explore whether celecoxib attenuates CS-induced inflammation in rat lungs. Rats were exposed to smoke and received celecoxib via intragastric feeding daily for 20 wk. We found that celecoxib inhibited interalveolar wall distance and pulmonary inflammation in the lungs of CS-treated rats. Celecoxib inhibited serum NO production, iNOS, COX-2 expression, and PGE2 production in CS-treated lung tissues. Our immunohistochemical data showed that CS-induced CD68 and COX-2 expression were inhibited by celecoxib. Furthermore, celecoxib attenuated the activation of phospho-IκBα and NF-κB in CS-treated rat lung. In addition, there was an inhibitory effect of celecoxib on the COX-2 expression and NF-κB activation in LPS-stimulated RAW 264.7 macrophages. Celecoxib also attenuated NF-κB activation in COX-2 siRNA-transfected RAW 264.7 macrophages. Thus, our findings suggest that the anti-inflammatory effects of celecoxib are mediated by its effects on NF-κB-regulated gene expression, which ultimately reduces the progression of CS-induced pulmonary emphysema.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chih-Hsuan Hsia ◽  
Thanasekaran Jayakumar ◽  
Wan-Jung Lu ◽  
Joen-Rong Sheu ◽  
Chih-Wei Hsia ◽  
...  

Objective. Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7). Methods. The expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK), heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. The level of nitric oxide (NO) was measured by spectrometer analysis. The nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal microscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant enzyme catalase (CAT). Results. AU expressively reduced NO production and COX-2, TNF-α, IL-1 β, and iNOS expression in LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA. Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced RAW 264.7 cells. Conclusion. The findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/MAPKs signaling pathways.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4089
Author(s):  
Seung-Hwa Baek ◽  
Tamina Park ◽  
Myung-Gyun Kang ◽  
Daeui Park

We evaluated the anti-inflammatory effects of SNAH in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by performing nitric oxide (NO) assays, cytokine enzyme-linked immunosorbent assays, Western blotting, and real-time reverse transcription-polymerase chain reaction analysis. SNAH inhibited the production of NO (nitric oxide), reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and interleukin (IL)-6. Additionally, 100 μM SNAH significantly inhibited total NO and ROS inhibitory activity by 93% (p < 0.001) and 34% (p < 0.05), respectively. Protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) stimulated by LPS were also decreased by SNAH. Moreover, SNAH significantly (p < 0.001) downregulated the TNF-α, IL-6, and iNOS mRNA expression upon LPS stimulation. In addition, 3–100 µM SNAH was not cytotoxic. Docking simulations and enzyme inhibitory assays with COX-2 revealed binding scores of −6.4 kcal/mol (IC50 = 47.8 μM) with SNAH compared to −11.1 kcal/mol (IC50 = 0.45 μM) with celecoxib, a known selective COX-2 inhibitor. Our results demonstrate that SNAH exerts anti-inflammatory effects via suppression of ROS and NO by COX-2 inhibition. Thus, SNAH may be useful as a pharmacological agent for treating inflammation-related diseases.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 443
Author(s):  
Dahae Lee ◽  
Akida Alishir ◽  
Tae Su Jang ◽  
Ki Hyun Kim

Cornus walteri (Cornaceae), known as Walter’s dogwood, has been used to treat dermatologic inflammation and diarrheal disease in traditional oriental medicine. As part of an ongoing research project to discover natural products with biological activities, the anti-inflammatory potential of compounds from C. walteri in lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 macrophages were explored. Phytochemical analysis of the methanol extract of the stem and stem bark of C. walteri led to the isolation of 15 chemical constituents. These compounds were evaluated for their inhibitory effects on the production of the proinflammatory mediator nitric oxide (NO) in LPS-stimulated macrophages, as measured by NO assays. The molecular mechanisms underlying the anti-inflammatory activity were investigated using western blotting. Our results demonstrated that among 15 chemical constituents, lupeol and benzyl salicylate inhibited NO production in LPS-activated RAW 264.7 macrophages. Benzyl salicylate was more efficient than NG-monomethyl-L-arginine mono-acetate salt (L-NMMA) in terms of its inhibitory effect. In addition, the mechanism of action of benzyl salicylate consisted of the inhibition of phosphorylation of IκB kinase alpha (IKKα), IκB kinase beta (IKKβ), inhibitor of kappa B alpha (IκBα), and nuclear factor kappa B (NF-κB) in LPS-stimulated macrophages. Furthermore, benzyl salicylate inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Taken together, these results suggest that benzyl salicylate present in the stem and stem bark of C. walteri has potential anti-inflammatory activity, supporting the potential application of this compound in the treatment of inflammatory diseases.


2016 ◽  
Vol 6 (5) ◽  
pp. 265 ◽  
Author(s):  
Chungshil Kwak ◽  
Hye In Choi ◽  
Jiwon Yang

Background: Oxidative stress and inflammation are associated with various ageing-related chronic diseases. The fruits and roots of Rosa multiflora Thunb. have been used in medicine for the treatment of edema and inflammatory diseases in Eastern Asia. Dried Rosa multiflora Thunb. flower (RMF) have been consumed as a tea in Korea, but reports on the biological activity of RMF are lacking. We evaluated the in vitro antioxidant and anti-inflammatory effects of an ethanol extract from RMF as well as various solvent fractions from the extract.Methods: The ethanol extract (Et) of RMP was fractionated sequentially by hexane (Hx), dichloromethane (DM), ethylacetate (EA), n-butanol (Bt) and distilled water (DW). Total phenolic content and total flavonoid content, scavenging activities of the 2,2-diphenyl-1 picrylhydrazyl radical and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid radical and ferric-reducing antioxidant power were measured. Anti-inflammatory effects in terms of levels of nitric oxide and prostaglandin (PG) E2 and production of proinflammatory cytokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages were measured, and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were measured by Western blot analysis.Results: EA treatment showed the highest total phenolic and total flavonoid content and strongest antioxidant activity, followed by Bt and Et, measured by three different methods. Treatment with Et and all fractions significantly suppressed (p<0.05) nitric oxide production in a dose-dependent manner in LPS-treated RAW 264.7 macrophages via reduction of expression of iNOS protein. Treatment with Et, DM and EA significantly suppressed (p<0.05) PGE2 production induced by LPS treatment, however, only Bt treatment significantly reduced (p<0.05) the expression of COX-2 protein. Treatment with DM, EA and Bt suppressed IL-6 production significantly (p<0.05) in LPS-treated RAW 264.7 macrophages, and treatment with Et, DM, EA and Bt suppressed TNF-α production significantly (p<0.05).Conclusions: These data suggest that the ethanol extract of Rosa multiflora Thunb. flower and its dichloromethan, ethylacetate and n-butanol fractions have potent antioxidant and/or anti-inflammatory activities.Keywords: Rosa multiflora Thunb. flower, antioxidant activity, anti-inflammatory activity, RAW 264 7 macrophages, cytokines, iNOS, COX-2 


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6489
Author(s):  
Mahmoud M. Gamal El-Din ◽  
Mohammed I. El-Gamal ◽  
Young-Do Kwon ◽  
Su-Yeon Kim ◽  
Hee-Soo Han ◽  
...  

A series of thirteen triarylpyrazole analogs were investigated as inhibitors of lipopolysaccharide (LPS)-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production in RAW 264.7 macrophages. The target compounds 1a–m have first been assessed for cytotoxicity against RAW 264.7 macrophages to determine their non-cytotoxic concentration(s) for anti-inflammatory testing to make sure that the inhibition of PGE2 and NO production would not be caused by cytotoxicity. It was found that compounds 1f and 1m were the most potent PGE2 inhibitors with IC50 values of 7.1 and 1.1 μM, respectively. In addition, these compounds also showed inhibitory effects of 11.6% and 37.19% on LPS-induced NO production, respectively. The western blots analysis of COX-2 and iNOS showed that the PGE2 and NO inhibitory effect of compound 1m are attributed to inhibition of COX-2 and iNOS protein expression through inactivation of p38.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 277
Author(s):  
Lei Wang ◽  
Hye-Won Yang ◽  
Ginnae Ahn ◽  
Xiaoting Fu ◽  
Jiachao Xu ◽  
...  

In the present study, the in vitro and in vivo anti-inflammatory effects of the sulfated polysaccharides isolated from Sargassum fulvellum (SFPS) were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results indicated that SFPS improved the viability of LPS-stimulated RAW 264.7 macrophages from 80.02 to 86.80, 90.09, and 94.62% at the concentration of 25, 50, and 100 µg/mL, respectively. Also, SFPS remarkably and concentration-dependently decreased the production levels of inflammatory molecules including nitric oxide (NO), tumor necrosis factor-alpha, prostaglandin E2, interleukin-1 beta, and interleukin-6 in LPS-treated RAW 264.7 macrophages. In addition, SFPS significantly inhibited the expression levels of cyclooxygenase-2 and inducible nitric oxide synthase in LPS-treated RAW 264.7 macrophages. Furthermore, the in vivo test results indicated that SFPS improved the survival rate of LPS-treated zebrafish from 53.33 to 56.67, 60.00, and 70.00% at the concentration of 25, 50, and 100 µg/mL, respectively. In addition, SFPS effectively reduced cell death, reactive oxygen species, and NO levels in LPS-stimulated zebrafish. Taken together, these results suggested that SFPS possesses strong in vitro and in vivo anti-inflammatory activities, and could be used as an ingredient to develop anti-inflammatory agents in the functional food and pharmaceutical industries.


Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 2
Author(s):  
Gina De La Fuente ◽  
Marco Fontana ◽  
Valentina Asnaghi ◽  
Mariachiara Chiantore ◽  
Serena Mirata ◽  
...  

Inflammation and oxidative stress are part of the complex biological responses of body tissues to harmful stimuli. In recent years, due to the increased understanding that oxidative stress is implicated in several diseases, pharmaceutical industries have invested in the research and development of new antioxidant compounds, especially from marine environment sources. Marine seaweeds have shown the presence of many bioactive secondary metabolites, with great potentialities from both the nutraceutical and the biomedical point of view. In this study, 50%-ethanolic and DMSO extracts from the species C. amentacea var. stricta were obtained for the first time from seaweeds collected in the Ligurian Sea (north-western Mediterranean). The bioactive properties of these extracts were then investigated, in terms of quantification of specific antioxidant activities by relevant ROS scavenging spectrophotometric tests, and of anti-inflammatory properties in LPS-stimulated macrophages by evaluation of inhibition of inflammatory cytokines and mediators. The data obtained in this study demonstrate a strong anti-inflammatory effect of both C. amentacea extracts (DMSO and ethanolic). The extracts showed a very low grade of toxicity on RAW 264.7 macrophages and L929 fibroblasts and a plethora of antioxidant and anti-inflammatory effects that were for the first time thoroughly investigated. The two extracts were able to scavenge OH and NO radicals (OH EC50 between 392 and 454 μg/mL; NO EC50 between 546 and 1293 μg/mL), to partially rescue H2O2-induced RAW 264.7 macrophages cell death, to abate intracellular ROS production in H2O2-stimulated macrophages and fibroblasts and to strongly inhibit LPS-induced inflammatory mediators, such as NO production and IL-1α, IL-6, cyclooxygenase-2 and inducible NO synthase gene expression in RAW 264.7 macrophages. These results pave the way, for the future use of C. amentacea metabolites, as an example, as antioxidant food additives in antiaging formulations as well as in cosmetic lenitive lotions for inflamed and/or damaged skin.


Sign in / Sign up

Export Citation Format

Share Document