Effect of Gut Microbiota on the Metabolism of Chemical Constituents of Berberis kansuensis Extract Based on UHPLC-Orbitrap-MS Technique

Planta Medica ◽  
2021 ◽  
Author(s):  
Huan Du ◽  
Tong Xu ◽  
Huan Yi ◽  
Xinmei Xu ◽  
Chengcheng Zhao ◽  
...  

AbstractThe dried stem bark of Berberis kansuensis is a commonly used Tibetan herbal medicine for the treatment of diabetes. Its main chemical components are alkaloids, such as berberine, magnoflorine and jatrorrhizine. However, the role of gut microbiota in the in vivo metabolism of these chemical components has not been fully elucidated. In this study, an ultra-high performance liquid chromatography method coupled with Orbitrap mass spectrometry (UHPLC-Orbitrap-MS) technology was applied to detect and identify prototype components and metabolites in rat intestinal contents and serum samples after oral administration of a B. kansuensis extract. A total of 16 prototype components and 40 metabolites were identified. The primary metabolic pathways of the chemical components from B. kansuensis extract were demethylation, desaturation, deglycosylation, reduction, hydroxylation, and other conjugation reactions including sulfation, glucuronidation, glycosidation, and methylation. By comparing the differences of metabolites between diabetic and pseudo-germ-free diabetic rats, we found that the metabolic transformation of some chemical components in B. kansuensis extract such as bufotenin, ferulic acid 4-O-β-D-glucopyranoside, magnoflorine, and 8-oxyberberine, was affected by the gut microbiota. The results revealed that the gut microbiota can affect the metabolic transformation of chemical constituents in B. kansuensis extract. These findings can enhance our understanding of the active ingredients of B. kansuensis extract and the key role of the gut microbiota on them.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3977
Author(s):  
Shaoyun Wang ◽  
Xiaozhu Sun ◽  
Shuo An ◽  
Fang Sang ◽  
Yunli Zhao ◽  
...  

Polygoni Multiflori Radix Praeparata (PMRP), as the processed product of tuberous roots of Polygonum multiflorum Thunb., is one of the most famous traditional Chinese medicines, with a long history. However, in recent years, liver adverse reactions linked to PMRP have been frequently reported. Our work attempted to investigate the chemical constituents of PMRP for clinical research and safe medication. In this study, an effective and rapid method was established to separate and characterize the constituents in PMRP by combining ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS). Based on the accurate mass measurements for molecular and characteristic fragment ions, a total of 103 compounds, including 24 anthraquinones, 21 stilbenes, 15 phenolic acids, 14 flavones, and 29 other compounds were identified or tentatively characterized. Forty-eight compounds were tentatively characterized from PMRP for the first time, and their fragmentation behaviors were summarized. There were 101 components in PMRP ethanol extract (PMRPE) and 91 components in PMRP water extract (PMRPW). Simultaneously, the peak areas of several potential xenobiotic components were compared in the detection, which showed that PMRPE has a higher content of anthraquinones and stilbenes. The obtained results can be used in pharmacological and toxicological research and provided useful information for further in vitro and in vivo studies.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 898
Author(s):  
Xin Wang ◽  
Xiang-Jian Zhong ◽  
Na Zhou ◽  
Ning Cai ◽  
Jia-Hui Xu ◽  
...  

Gymnadenia conopsea R. Br. is a traditional Tibetan medicinal plant that grows at altitudes above 3000 m, which is used to treat neurasthenia, asthma, coughs, and chronic hepatitis. However, a comprehensive configuration of the chemical profile of this plant has not been reported because of the complexity of its chemical constituents. In this study, a rapid and precise method based on ultra-high performance liquid chromatography (UPLC) combined with an Orbitrap mass spectrometer (UPLC–Orbitrap–MS/MS) was established in both positive- and negative-ion modes to rapidly identify various chemical components in the tubers of G. conopsea for the first time. Finally, a total of 91 compounds, including 17 succinic acid ester glycosides, 9 stilbenes, 6 phenanthrenes, 19 alkaloids, 11 terpenoids and steroids, 20 phenolic acid derivatives, and 9 others, were identified in the tubers of G. conopsea based on the accurate mass within 3 ppm error. Furthermore, many alkaloids, phenolic acid derivates, and terpenes were reported from G. conopsea for the first time. This rapid method provides an important scientific basis for further study on the cultivation, clinical application, and functional food of G. conopsea.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 959 ◽  
Author(s):  
Jefferson Antônio Leite ◽  
Gabriela Pessenda ◽  
Isabel C. Guerra-Gomes ◽  
Alynne Karen Mendonça de Santana ◽  
Camila André Pereira ◽  
...  

Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.


2014 ◽  
Vol 42 (05) ◽  
pp. 1071-1098 ◽  
Author(s):  
Mao-Xing Li ◽  
Xi-Rui He ◽  
Rui Tao ◽  
Xinyuan Cao

In the present review, the literature data on the chemical constituents and biological investigations of the genus Pedicularis are summarized. Some species of Pedicularis have been widely applied in traditional Chinese medicine. A wide range of chemical components including iridoid glycosides, phenylpropanoid glycosides (PhGs), lignans glycosides, flavonoids, alkaloids and other compounds have been isolated and identified from the genus Pedicularis. In vitro and in vivo studies indicated some monomer compounds and extracts from the genus Pedicularis have been found to possess antitumor, hepatoprotective, anti-oxidative, antihaemolysis, antibacterial activity, fatigue relief of skeletal muscle, nootropic effect and other activities.


2021 ◽  
Vol 16 (9) ◽  
pp. 1934578X2110350
Author(s):  
Lijun Cheng ◽  
Yang Deng

Gastrodin (GAS) and its aglycone, p-hydroxybenzyl alcohol (HBA), are both bioactive compounds extracted from Gastrodia elata Blume (GEB). In the current Chinese pharmacopoeia, they are regarded as quality control markers for GEB. In this study, we developed a high-performance liquid chromatography method coupled with a diode array detector to quantify GAS and HBA concentrations in plasma following oral ingestion by rats. For the first time, GAS was detected in vivo after HBA administration. GAS and HBA both had similar pharmacological effects, but the influence of the glucose moiety resulted in different pharmacokinetic characteristics. In this study, the effects of GAS and HBA at different administration durations were investigated in zebrafish larvae. These compounds were found to induce a sedative effect but had different onset times. In conclusion, a biotransformation of HBA to GAS could be observed in the rats. This may be a new insight into the pharmacokinetic characteristics of these bioactive compounds and also relates to the different ways in which they take effect.


1995 ◽  
Vol 269 (2) ◽  
pp. R287-R293 ◽  
Author(s):  
N. Yamaguchi

The aim of the present study was to investigate if either dihydropyridine-sensitive L-type Ca2+ channels or cholinergic receptor-mediated mechanisms are implicated in endothelin-1 (ET)-induced adrenal catecholamine (CA) secretion in anesthetized dogs. ET was locally administered to the left adrenal gland via the left adrenolumbar artery. Plasma CA concentrations in adrenal venous and aortic blood were determined by a high-performance liquid chromatography method. In the control group, local infusion (1 min, 0.5 ml/min) of ET (the fixed total dose of 0.5 microgram given to the gland or approximately 0.0197 microgram/kg of body weight) resulted in a sharp increase in the basal CA output, followed by a rapid decline, and a relatively slow secondary response lasted over a period of 15-30 min. In the second group treated with nifedipine (5 micrograms or approximately 0.207 microgram/kg) similarly administered 10 min before ET infusion, the ET-induced first steep increase in CA output was significantly attenuated by approximately 75% (P < 0.05, n = 6). In dogs similarly receiving either pentolinium (1 mg or approximately 0.041 mg/kg) or atropine (0.5 mg or approximately 0.018 mg/kg), the ET-induced CA response remained unchanged. The results indicate that ET-induced adrenal CA release was largely mediated by the activation of dihydropyridine-sensitive L-type Ca2+ channels. Furthermore, neither nicotinic nor muscarinic receptors were functionally implicated in the CA response to ET. The study suggests the existence of noncholinergic mechanisms involved in the secretory action of ET on the adrenal medulla in the dog in vivo.


1991 ◽  
Vol 260 (1) ◽  
pp. R208-R216 ◽  
Author(s):  
P. J. Chiu ◽  
G. Tetzloff ◽  
M. T. Romano ◽  
C. J. Foster ◽  
E. J. Sybertz

The role of C-atrial natriuretic factor (ANF) receptors and neutral endopeptidase (NEP) in the pharmacokinetics and hydrolysis of 125I-labeled ANF was evaluated in rats by using C-ANF and SCH 39370 to block the nonenzymatic and enzymatic pathways, respectively. After a bolus injection of 125I-ANF, the resulting area under the plasma concentration curve (AUC) with C-ANF treatment was seven times the control value with regard to trichloroacetic acid-precipitable (TCA-ppt) radioactivity (intact ANF). SCH 39370 tended to increase AUC, but the changes were not significant. Nevertheless, SCH 39370 suppressed the appearance of TCA-soluble radioactivity (hydrolytic products), indicating that in vivo inhibition of ANF degradation had occurred. SCH 39370 plus C-ANF produced a 15-fold increase in AUC for TCA-ppt radioactivity and a reduction in plasma TCA-soluble radioactivity. High-performance liquid chromatography (HPLC) analysis confirmed that combination treatment increased intact ANF and reduced hydrolytic products in the plasma. SCH 39370 reduced clearance (C) without altering volume of distribution in steady state (Vss) and half-life (t1/2). C-ANF decreased both C and Vss leading to a fourfold increase in t1/2, which was further prolonged by SCH 39370 (7.5 times control). Bilateral nephrectomy caused a proportionally similar decrease in Vss and C without changing t1/2, suggesting significant extrarenal metabolism of ANF. SCH 39370 systemically inhibits ANF hydrolysis; the resulting increase in ANF, however, is masked by the great capacity of ANF clearance receptors but can be revealed with excess C-ANF, suggesting that the plasma ANF concentrations are determined by the interplay of the C-ANF receptor and NEP systems.


2015 ◽  
Vol 112 (32) ◽  
pp. 10038-10043 ◽  
Author(s):  
Noortje Ijssennagger ◽  
Clara Belzer ◽  
Guido J. Hooiveld ◽  
Jan Dekker ◽  
Saskia W. C. van Mil ◽  
...  

Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function.


1987 ◽  
Vol 241 (2) ◽  
pp. 491-498 ◽  
Author(s):  
D Pérez-Sala ◽  
R Parrilla ◽  
M S Ayuso

We investigated the effects of administration of single amino acids to starved rats on the regulation of protein synthesis in the liver. Of all the amino acids tested, only alanine, ornithine and proline promoted statistically significant increases in the extent of hepatic polyribosome aggregation. The most effective of these was alanine, whose effect of promoting polyribosomal aggregation was accompanied by a decrease in the polypeptide-chain elongation time. The following observations indicate that alanine plays an important physiological role in the regulation of hepatic protein synthesis. Alanine was the amino acid showing the largest decrease in hepatic content in the transition from high (fed) to low (starved) rates of protein synthesis. The administration of glucose or pyruvate is also effective in increasing liver protein synthesis in starved rats, and their effects were accompanied by an increased hepatic alanine content. An increase in hepatic ornithine content does not lead to an increased protein synthesis, unless it is accompanied by an increase of alanine. The effect of alanine is observed either in vivo, in rats pretreated with cycloserine to prevent its transamination, or in isolated liver cells under conditions in which its metabolic transformation is fully impeded.


2021 ◽  
Vol 12 (1) ◽  
pp. 236
Author(s):  
Reshmi Akter ◽  
Gi-Young Kwak ◽  
Jong Chan Ahn ◽  
Ramya Mathiyalagan ◽  
Zelika Mega Ramadhania ◽  
...  

Serial alcohol consumption causes alcoholic liver disease (ALD), which can lead to fatty liver, hepatitis, and cirrhosis. Terminalia ferdinandiana (Kakadu plum) is an indigenous fruit of Australia, which is utilized as a functional food. It is a commercially important antioxidant as it contains a more eloquent level of ascorbic acid than other oranges. In this study, we analyzed the chemical constituents of vitamin C, gallic acid, ellagic acid, and daidzin via High-performance liquid chromatography (HPLC) in the Kakadu plum from two different regions including the Northern Territory (NT) and Western Australia (WA), and compared their biochemical properties. The vitamin C content was much higher (almost 70%) in Kakadu plum (KKD) from the NT than WA. Moreover, ROS generation was inhibited significantly in HepG2 (human hepatoma) cells with the KKD-NT extract treatment when compared to the KKD-WA extract treatment. The cytotoxicity produced by ethanol was significantly suppressed in response to the treatment with both of the samples. In addition, our samples (KKD-NT and KKD-WA) increased the activity of two key enzymes involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) that metabolize ethanol. These results show the biochemical confirmation of the mechanism by which KKD exhibits its biological functions including relief from alcohol hangovers as well as protection of the liver cells by the suppression of ROS production and toxic insults.


Sign in / Sign up

Export Citation Format

Share Document