scholarly journals Impact of the Metal Center and Leaving Group on the Anticancer Activity of Organometallic Complexes of Pyridine-2-carbothioamide

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 833
Author(s):  
Jahanzaib Arshad ◽  
Kelvin K. H. Tong ◽  
Sanam Movassaghi ◽  
Tilo Söhnel ◽  
Stephen M. F. Jamieson ◽  
...  

RuII(cym)Cl (cym = η6-p-cymene) complexes of pyridinecarbothioamides have shown potential for development as orally active anticancer metallodrugs, underlined by their high selectivity towards plectin as the molecular target. In order to investigate the impact of the metal center on the anticancer activity and their physicochemical properties, the Os(cym), Rh- and Ir(Cp*) (Cp* = pentamethylcyclopentadienyl) analogues of the most promising and orally active compound plecstatin 2 were prepared and characterized by spectroscopic techniques and X-ray diffraction analysis. Dissolution in aqueous medium results in quick ligand exchange reactions; however, over time no further changes in the 1H NMR spectra were observed. The Rh- and Ir(Cp*) complexes were investigated for their reactions with amino acids, and while they reacted with Cys, no reaction with His was observed. Studies on the in vitro anticancer activity identified the Ru derivatives as the most potent, independent of their halido leaving group, while the Rh derivative was more active than the Ir analogue. This demonstrates that the metal center has a significant impact on the anticancer activity of the compound class.

Metallodrugs ◽  
2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Mario Kubanik ◽  
Jason K. Y. Tu ◽  
Tilo Söhnel ◽  
Michaela Hejl ◽  
Michael A. Jakupec ◽  
...  

Abstract3-Hydroxyflavones belong to the naturally occurring class of flavonoids and have been extensively studied with regard to medicinal application. Moreover, it has been demonstrated that these compounds act as bioactive chelates to the ruthenium(II)–arene moiety. Such organometallic complexes have shown promising anticancer activity against tumor cells via a multitargeting mode of action, interacting with DNA and inhibiting topoisomerase IIα. In this paper, we present the synthesis and characterization of an extended series of 3-hydroxyflavone ligands and their corresponding ruthenium-p-cymene complexes to study the impact of substitution pattern as well as of electron-withdrawing and –donating substituents at the flavonol-phenyl group. The ligands and complexes were characterized by elemental analysis, ESI-MS, 1D as well as 2D NMR spectroscopy. The structures of four Ru(η6-p-cymene) complexes were determined in solid state by single-crystal X-ray diffraction, and the impact of the substitution pattern with regard to in vitro anticancer activity in human cancer cell lines is discussed. Structural differences, calculated octanol-water partition coefficients (clogP) of the flavonols and aqueous solubility were used to rationalize the finding that chlorido[3-(oxo-κO)-2-(3,5- dimethoxyphenyl)-chromen-4-onato-κO](η6-p-cymene)ruthenium(II) 2b exhibits the highest cytotoxicity with IC50 values in the low μM range in all tested cell lines.


2019 ◽  
Vol 41 (6) ◽  
pp. 1090-1090
Author(s):  
Mehmet Poyraz Mehmet Poyraz ◽  
Musa Sari Musa Sari ◽  
Halil Berber Halil Berber ◽  
Nursenem Karaca and Fatih Demirci Nursenem Karaca and Fatih Demirci

A new Schiff base, namely 2-methoxy-6-((2-(4 nitrophenyl) hydrazineylidene) methyl)phenol was synthesized and characterized by melting points, elemental analysis, thermogravimetric analysis and spectroscopic techniques (FT-IR, 1H-NMR and UV-VIS spectra). The chemical structure of compound was further confirmed by single crystal structural X-ray diffraction. The Schiff base is crystallized in the triclinic space group P-1. In the crystal, molecules are linked by O-H…O hydrogen bonds between the hydroxy “-O-” atom and the methoxy “-O-” atom. Furthermore, the synthesized Schiff base was tested for the in vitro anticandidal activities using CLSI broth microdilution method against human pathogenic Candida albicans, C. parapsilosis and C. krusei standard strains. In the anticandidal activity test results, the new Schiff base was found to be effective at 1 mg/mL - 0.25 mg/mL concentrations. (The last line omitted) (The sentence marked in red will be deleted)


Author(s):  
Sushmitha Bujji ◽  
Praveen Kumar E ◽  
Sree Kanth Sivan ◽  
Manjunatha DH ◽  
Subhashini N.J.P.

Background: Cancer disease is making a serious concern globally. Global cancer occurrence is steadily increasing every year. There is always a persistent need to develop new anticancer drugs with reduced side effects or act synergistically with the existing chemotherapeutics. Objective: Benzoxazoles are fused bicyclic nitrogen and oxygen-containing heterocyclic compounds and are considered biologically privileged scaffolds. We designed a synthetic route to link the benzoxazoles with oxadiazoles resulting in a better pharmacophore for anticancer activity. Methods: A series of novel amide derivatives of benzoxazole linked 1,3,4-oxadiazoles (10a-j) were synthesized and characterized by 1H NMR, 13C NMR, and mass spectroscopic techniques. The biological properties of the compounds were screened in vitro against four different tumor cell lines. Results: The results suggest that the compound 10b having 3,4,5-trimethoxy substitution on the phenyl ring exhibited potent anticancer activity in three cell lines (A549 = 0.13 ± 0.014 µM, MCF-7 = 0.10 ± 0.013 µM and HT-29 = 0.22 ± 0.017 µM). Notably, among the synthesized derivatives, compounds 10b, 10c, 10f, 10g, and 10i exhibited potent anticancer activity than the control IC50 in the range of 0.11 ± 0.02 to 0.93 ± 0.034 µM. Molecular docking simulation results showed compounds were stabilized by hydrogen bond and π-π interactions with the protein. Conclusion: The molecules showed comparable binding affinities with standard Combretastatin-A4. The present research work is preliminary and needs further studies to take the synthesized compounds to the next level in the cancer research field.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Vasilios I. Balas ◽  
Sotiris K. Hadjikakou ◽  
Nick Hadjiliadis ◽  
Nikolaos Kourkoumelis ◽  
Mark E. Light ◽  
...  

A novel tri-n-butyl(IV) derivative of 2-thiobarbituric acid (HTBA) of formula[(n-Bu)3Sn(TBA)⋅H2O](1) has been synthesized and characterized by elemental analysis and119Sn-NMR and FT-IR spectroscopic techniques. The crystal structure of complex1has been determined by single crystal X-ray diffraction analysis at 120(2) K. The geometry around Sn(IV) is trigonal bipyramidal. Threen-butyl groups and one oxygen atom from a deprotonated 2-thiobarbituric ligand are bonded to the metal center. The geometry is completed with one oxygen from a water molecule. Compound1exhibits potent, in vitro, cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis. In addition, the inhibition caused by1, in the rate of lipoxygenase (LOX) catalyzed oxidation reaction of linoleic acid to hyperoxolinoleic acid, has been also kinetically and theoretically studied. The results are compared to that of cisplatin.


2020 ◽  
Vol 15 (2) ◽  
pp. 92-112 ◽  
Author(s):  
Katerina I. Slavova ◽  
Lozan T. Todorov ◽  
Nataliya P. Belskaya ◽  
Mauricio A. Palafox ◽  
Irena P. Kostova

Background: The impact of cancer on modern society cannot be emphasized enough in terms of both economic and human costs. Cancer treatments are known, unfortunately, for their side effects – frequently numerous and severe. Drug resistance is another issue medical professionals have to tackle when dealing with neoplastic illnesses. Cancer rates are rising worldwide due to various factors - low-quality nutrition, air and water pollution, tobacco use, etc. For those and many other reasons, drug discovery in the field of oncology is a top priority in modern medical science. Objective: To present the reader with the latest in cancer drug discovery with regard to 1,2,3-triazole- containing molecules in a clear, concise way so as to make the present review a useful tool for researchers. Methods: Available information present on the role of 1,2,3-triazoles in cancer treatment was collected. Data was collected from scientific literature, as well as from patents. Results: A vast number of triazole-containing molecules with antiproliferative properties have been proposed, synthesized and tested for anticancer activity both in vitro and in vivo. The substances vary greatly when considering molecular structure, proposed mechanisms of action and affected cancer cell types. Conclusion: Triazole-containing molecules with anticancer activity are being widely synthesized and extensively tested. They vary significantly in terms of both structure and mechanism of action. The methods for their preparation and administration are well established and with proven reproducibility. These facts suggest that triazoles may play an important role in the discovery of novel antiproliferative medications with improved effectiveness and safety profile.


2009 ◽  
Vol 15 (45) ◽  
pp. 12283-12291 ◽  
Author(s):  
Wolfgang Kandioller ◽  
Christian G. Hartinger ◽  
Alexey A. Nazarov ◽  
Caroline Bartel ◽  
Matthias Skocic ◽  
...  

2022 ◽  
Vol 15 (1) ◽  
pp. 92
Author(s):  
Lilianna Becan ◽  
Anna Pyra ◽  
Nina Rembiałkowska ◽  
Iwona Bryndal

Thiazolo[4,5-d]pyrimidine derivatives are considered potential therapeutic agents, particularly in the development of anticancer drugs. In this study, new 7-oxo-(2a-e), 7-chloro-(3a-e) and also three 7-amino-(4a-c) 5-trifluoromethyl-2-thioxo-thiazolo[4,5-d]pyrimidine derivatives have been synthesized and evaluated for their potential anticancer activity. These derivatives were characterized by spectroscopic methods and elemental analysis, and the single-crystal X-ray diffraction was further performed to confirm a 3D structure for compounds 2e and 4b. The antiproliferative activity evaluation of twelve new compounds was carried out on a variety of cell lines including four human cancer (A375, C32, DU145, MCF-7/WT) and two normal cell lines (CHO-K1 and HaCaT). Four of them (2b, 3b, 4b and 4c) were selected by the National Cancer Institute and evaluated for their in vitro anticancer activity using the NCI-60 screening program. 7-Chloro-3-phenyl-5-(trifluoromethyl)[1,3]thiazolo[4,5-d]pyrimidine-2(3H)-thione (3b) proved to be the most active among the newly synthesized compounds.


2021 ◽  
Author(s):  
Poournima Patil ◽  
Suresh Killedar

Abstract The current work was addressed to characterize gallic acid from amla fruit and quercetin from peels of pomegranate fruit and formulated into Chitosan (CS) nanoparticles and to evaluate their cytotoxicity towards human colorectal cancer (HCT 116) cell lines for the treatment of DMH induced colorectal cancer in Wistar rats. Identification of the biomolecules was performed by using different chromatographic and spectroscopic techniques, as 1H-NMR, GC-MS, LC-MS and HPTLC. Characterization of CS nanoparticles carried out by using X- ray diffraction (XRD) Differential scanning calorimetry (DSC), Scanning Electron Microscope (SEM), entrapment efficiency and In vitro drug release confirmed successful encapsulation of biomolecules into CS nanoparticles. A significant change in aberrant crypt foci (ACF) in CS nanoparticles compared to polyherbal extract were observed, with decrease in the colonic glutathione, catalase and superoxide dismutase levels and values differed significantly (P < 0.005).


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3040 ◽  
Author(s):  
Małgorzata Milczarek ◽  
Lidia Mielczarek ◽  
Katarzyna Lubelska ◽  
Aleksandra Dąbrowska ◽  
Zdzisław Chilmonczyk ◽  
...  

Isothiocyanates (R-NCS) are sulphur-containing phytochemicals. The main source are plants of the Brassicaceae family. The best known plant-derived isothiocyanate is sulforaphane that has exhibited anticancer activity in both in vivo and in vitro studies. Recent attempts to expand their use in cancer therapy involve combining them with standard chemotherapeutics in order to increase their therapeutic efficacy. The aim of this paper is to determine the impact of sulforaphane and its natural analog alyssin on the anticancer activity of the well-known anticancer drug 5-fluorouracil. The type of drug-drug interactions was determined in prostate and colon cancer cell lines. Confocal microscopy, western blot and flow cytometry methods were employed to determine the mechanism of cytotoxic and cytostatic action of the combinations. The study revealed that additive or synergistic interactions were observed between 5-fluorouracil and both isothiocyanates, which enhanced the anticancer activity of 5-fluorouracil, particularly in colon cancer cell lines. An increased cytostatic effect was observed in case of alyssin while for sulforaphane the synergistic interaction with 5-fluorouracil involved an intensification of apoptotic cell death.


Sign in / Sign up

Export Citation Format

Share Document