scholarly journals Soybean-Oil-Based CO2-Switchable Surfactants with Multiple Heads

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4342
Author(s):  
Huiyu Huang ◽  
Xiaoling Huang ◽  
Hongping Quan ◽  
Xin Su

Oligomeric surfactants display the novel properties of low surface activity, low critical micellar concentration and enhanced viscosity, but no CO2 switchable oligomeric surfactants have been developed so far. The introduction of CO2 can convert tertiary amine reversibly to quaternary ammonium salt, which causes switchable surface activity. In this study, epoxidized soybean oil was selected as a raw material to synthesize a CO2-responsive oligomeric surfactant. After addition and removal of CO2, the conductivity analyzing proves that the oligomeric surfactant had a good response to CO2 stimulation. The viscosity of the oligomeric surfactant solution increased obviously after sparging CO2, but returned to its initial low viscosity in the absence of CO2. This work is expected to open a new window for the study of bio-based CO2-stimulated oligomeric surfactants.

2012 ◽  
Vol 260-261 ◽  
pp. 83-86
Author(s):  
Ming Yang Wang ◽  
Mao Sheng Wan ◽  
Cheng Bo Cao

The cetyl \ octadecyl dimethyl tertiary amine(percentage composition 7:3)is a very common and inexpensive chemical raw material in the chemical market. In this paper, a series of the new chemical composite DSD acid-triazine structure containing long chain quaternary ammonium salt fluorescent brighteners (FBs) were synthesized through a three-step condensation reaction of cyanuric chloride, DSD acid, cetyl \ octadecyl dimethyl tertiary amine and amino compound. The obtained compounds were characterized by the analysis of the IR spectrum, UV spectrum and fluorescence excitation and emission spectrum, and whiteness were tested through dyeing filter paper. The results show that compounds 7a-j have the obvious UV absorption, fluorescence emission and dyeing properties, with a wider absorption, emission wavelength range and enhancing fluorescence quantum yield, achieving the synergetic enhancement effect by compounding.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 681
Author(s):  
Monika Sterczyńska ◽  
Marek Zdaniewicz ◽  
Katarzyna Wolny-Koładka

During the production of beer, and especially beer wort, the main wastes are spent grain and hot trub, i.e., the so-called “hot break.” Combined with yeast after fermentation, they represent the most valuable wastes. Hot trub is also one of the most valuable by-products. Studies on the chemical composition of these sediments and their rheological properties as waste products will contribute to their effective disposal and even further use as valuable pharmaceutical and cosmetic raw materials. So far, hot trub has been studied for morphology and particle distribution depending on the raw material composition and beer wort extract. However, there are no preliminary studies on the rheological properties of hot trub and hops. In particular, no attention has yet been paid to the dependence of these properties on the hop variety or different protein sources used. The aim of this study was to examine the effect of different hopping methods on hot trub viscosity and beer wort physicochemical parameters. Additionally, the hop solutions were measured at different temperatures. A microbiological analysis of hop sediments was also performed to determine the post-process survival of selected microorganisms in these wastes. For manufacturers of pumps used in the brewing industry, the most convenient material is that of the lowest viscosity. Low viscosity hot trub can be removed at lower velocities, which reduces costs and simplifies washing and transport. The sediments also had similar equilibrium viscosity values at high shear rates.


2018 ◽  
Vol 23 (5) ◽  
pp. 557-563 ◽  
Author(s):  
Shangde Sun ◽  
Liya Tian ◽  
Bingxue Hu ◽  
Cong Jiang

Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 527 ◽  
Author(s):  
Gaojian Ma ◽  
Lingmei Dai ◽  
Dehua Liu ◽  
Wei Du

Acidic oil, which is easily obtained and with lower cost, is a potential raw material for biodiesel production. Apart from containing large quantity of FFAs (free fatty acids), acidic oil usually contains some amount of inorganic acid, glycerides and some other complex components, leading to complicated effect on lipase’s catalytic performance. Exploring the efficient process of converting acidic oil for biodiesel production is of great significance to promote the use of acidic oil. A two-step conversion process for acidic soybean oil was proposed in this paper, where sulfuric acid-mediated hydrolysis was adopted first, then the hydrolyzed free fatty acid, collected from the upper oil layer was further subject to the second-step esterification catalyzed by immobilized lipase Novozym435. Through this novel process, the negative effect caused by harmful impurities and by-product glycerol on lipase was eliminated. A fatty acid methyl ester (FAME) yield of 95% could be obtained with the acid value decreased to 4 mgKOH/g from 188 mgKOH/g. There was no obvious loss in lipase’s activity and a FAME yield of 90% could be maintained with the lipase being repeatedly used for 10 batches. This process was found to have a good applicability to different acidic oils, indicating it has great prospect for converting low quality oil sources for biodiesel preparation.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 444 ◽  
Author(s):  
Pavlína Hájková

This work describes the role of chemical composition and curing conditions in geopolymer strength, leachability of chemical elements and porosity. The study focuses on geopolymer material prepared from calcined kaolinite claystone, which is not studied frequently as a raw material for geopolymer production, although it has a high application potential as it is easily commercially available and allows preparation of geopolymers with low viscosity. The composition of geopolymers and their curing methods were selected considering their ease of use in the praxis. Therefore, the potassium water glass itself was used as alkali activator without any KOH or NaOH addition. Chemical composition was changed only by the density of water glass in the range of 1.2 to 1.6 g·cm−3. Geopolymers were cured at a temperature within the range of 5 °C–70 °C to speed up the solidification process as well as by microwave radiation. High compressive strengths were obtained for geopolymers with the highest densities of the water glass (1.5 and 1.6 g·cm−3) in dependence on various curing conditions. Higher strengths were achieved in the case of samples where the solidification was not accelerated. The samples cured at lower temperatures (5 °C) showed lower porosity compared to the other curing types. The lowest leachability of Si and alkalis was reached for the samples with water glass density 1.5 g·cm−3.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3313 ◽  
Author(s):  
Łukasz Janus ◽  
Julia Radwan-Pragłowska ◽  
Marek Piątkowski ◽  
Dariusz Bogdał

Recently, fluorescent probes became one of the most efficient tools for biosensing and bioimaging. Special attention is focused on carbon quantum dots (CQDs), which are characterized by the water solubility and lack of cytotoxicity. Moreover, they exhibit higher photostability comparing to traditional organic dyes. Currently, there is a great need for the novel, luminescent nanomaterials with tunable properties enabling fast and effective analysis of the biological samples. In this article, we propose a new, ecofriendly bottom-up synthesis approach for intelligent, surface-modified nanodots preparation using bioproducts as a raw material. Obtained nanomaterials were characterized over their morphology, chemical structure and switchable luminescence. Their possible use as a nanodevice for medicine was investigated. Finally, the products were confirmed to be non-toxic to fibroblasts and capable of cell imaging.


2016 ◽  
Vol 81 (2) ◽  
pp. 141-151 ◽  
Author(s):  
Jie Yan ◽  
Jinlan Yang ◽  
Rifu Yang ◽  
Haifen He ◽  
Qihai Liu ◽  
...  

A method for the iodine-catalyzed conjugation of soybean oil was developed, and the conjugated product was analyzed by UV, IR, and 1H NMR. The results indicated that the optimal conditions for conjugation included a temperature of 180?C, a catalyst loading of 0.5 wt.% and a reaction time of 3 h, at which the concentration of conjugated linoleic acid was 1.51 mol L-1, with 92 % conversion, the CLNA reached 0.225 mol L-1 when the temperature was 130?C, a catalyst loading of 0.5 wt.%, and a reaction time of 3 h with a conversion rate of 99.9 %. The reaction predominantly produced trans-trans, trans-cis and cis-trans isomers. It was also revealed that the conjugation of linolenic acid was much faster than that of linoleic acid. The method possessed the advantages of a short procedure, a high conversion rate, and no methyl esterification of the raw material, and it was an environmentally friendly technology that does not use solvents.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1964
Author(s):  
Huaiying Zhang ◽  
Damla Keskin ◽  
Willy H. de Haan-Visser ◽  
Guangyue Zu ◽  
Patrick van Rijn ◽  
...  

Gene therapy is a promising treatment for hereditary diseases, as well as acquired genetic diseases, including cancer. Facing the complicated physiological and pathological environment in vivo, developing efficient non-viral gene vectors is needed for their clinical application. Here, poly(N-isopropylacrylamide) (p(NIPAM)) nanogels are presented with either protonatable tertiary amine groups or permanently charged quaternized ammonium groups to achieve DNA complexation ability. In addition, a quaternary ammonium-functionalized nanogel was further provided with an aliphatic moiety using 1-bromododecane to add a membrane-interacting structure to ultimately facilitate intracellular release of the genetic material. The ability of the tertiary amine-, quaternized ammonium-, and aliphatic quaternized ammonium-functionalized p(NIPAM) nanogels (i.e., NGs, NGs-MI, and NGs-BDD, respectively) to mediate gene transfection was evaluated by fluorescence microscopy and flow cytometry. It is observed that NGs-BDD/pDNA complexes exhibit efficient gene loading, gene protection ability, and intracellular uptake similar to that of NGs-MI/pDNA complexes. However, only the NGs-BDD/pDNA complexes show a notable gene transfer efficiency, which can be ascribed to their ability to mediate DNA escape from endosomes. We conclude that NGs-BDD displays a cationic lipid-like behavior that facilitates endosomal escape by perturbing the endosomal/lysosomal membrane. These findings demonstrate that the presence of aliphatic chains within the nanogel is instrumental in accomplishing gene delivery, which provides a rationale for the further development of nanogel-based gene delivery systems.


Sign in / Sign up

Export Citation Format

Share Document