scholarly journals The Effect of Betulin Diphosphate in Wound Dressings of Bacterial Cellulose-ZnO NPs on Platelet Aggregation and the Activity of Oxidoreductases Regulated by NAD(P)+/NAD(P)H-Balance in Burns on Rats

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5478
Author(s):  
Nina Melnikova ◽  
Darina Malygina ◽  
Alyona Balakireva ◽  
Peter Peretyagin ◽  
Vadim Revin ◽  
...  

The inhibition of platelet aggregation, and the activity of oxidoreductases and microhemocirculation in a burn wound on the treatment of burns with wound dressings based on bacterial nanocellulose (BC)-zinc oxide nanoparticles (ZnO NPs)-betulin diphosphate (BDP) were studied. The control of the treatment by BC-ZnO NPs-BDP on burned rats by the noninvasive DLF method showed an increase in perfusion and the respiratory component in wavelet spectra, characterizing an improvement in oxygen saturation in the wound. The study on the volunteers’ blood found the inhibition of ADP-induced platelet aggregation by 30–90%. Disaggregation depends on the dose under the action of the ionized form of BDP and ZnO NPs-BDP in a phosphate buffer; it was reversible and had two waves. It was shown on rats that the specific activity of LDHreverse and LDHdirect (control-intact animals) on day 21 of treatment increased by 11–38% and 23%, respectively. The LDHreverse/LDHdirect ratio increased at BC-ZnO NPs-BDP treatment, which characterizes efficient NAD+ regeneration. AlDH activity increased significantly in the first 10 days by 70–170%, reflecting the effectiveness of the enzyme and NAD+ in utilizing toxic aldehydes at this stage of burn disease. The activities of GR and G6PDH using NADP(H) were increased with BC-ZnO NPs-BDP treatment.

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 713
Author(s):  
Nina Melnikova ◽  
Alexander Knyazev ◽  
Viktor Nikolskiy ◽  
Peter Peretyagin ◽  
Kseniia Belyaeva ◽  
...  

A design of new nanocomposites of bacterial cellulose (BC) and betulin diphosphate (BDP) pre-impregnated into the surface of zinc oxide nanoparticles (ZnO NPs) for the production of wound dressings is proposed. The sizes of crystalline BC and ZnO NPs (5–25%) corresponded to 5–6 nm and 10–18 nm, respectively (powder X-ray diffractometry (PXRD), Fourier-infrared (FTIR), ultraviolet (UV), atomic absorption (AAS) and photoluminescence (PL) spectroscopies). The biological activity of the wound dressings “BC-ZnO NPs-BDP” was investigated in rats using a burn wound model. Morpho-histological studies have shown that more intensive healing was observed during treatment with hydrophilic nanocomposites than the oleophilic standard (ZnO NPs-BDP oleogel; p < 0.001). Treatment by both hydrophilic and lipophilic agents led to increases in antioxidant enzyme activity (superoxide dismutase (SOD), catalase) in erythrocytes and decreases in the malondialdehyde (MDA) concentration by 7, 10 and 21 days (p < 0.001). The microcirculation index was restored on the 3rd day after burn under treatment with BC-ZnO NPs-BDP wound dressings. The results of effective wound healing with BC-ZnO NPs-BDP nanocomposites can be explained by the synergistic effect of all nanocomposite components, which regulate oxygenation and microcirculation, reducing hypoxia and oxidative stress in a burn wound.


1966 ◽  
Vol 15 (03/04) ◽  
pp. 413-419 ◽  
Author(s):  
Z Jerushalmy ◽  
M. B Zucker

Summary“Early” fibrinogen degradation products are more potent inhibitors of thrombin-induced clotting than “late” products and also interfere with the ability of thrombin to release serotonin from platelets. “Early” and “intermediate” FDP cause moderate inhibition of platelet aggregation induced by adenosine diphosphate or connective tissue particles. Serotonin release by connective tissue particles is probably not inhibited by FDP.


1980 ◽  
Vol 44 (03) ◽  
pp. 143-145 ◽  
Author(s):  
J Dalsgaard-Nielsen ◽  
J Gormsen

SummaryHuman platelets in platelet rich plasma (PRP) incubated at 37° C with 0.3–2% halothane for 5–10 min lost the ability to aggregate with ADP, epinephrine and collagen.At the same time uptake and release of 14C-serotonin was inhibited. When halothane supply was removed, platelet functions rapidly returned to normal. However, after high concentrations of halothane, the inhibition of platelet aggregation was irreversible or only partially reversible.The results suggest that halothane anaesthesia produces a transient impairment of platelet function.


1992 ◽  
Vol 68 (01) ◽  
pp. 069-073 ◽  
Author(s):  
J J J van Giezen ◽  
J W C M Jansen

SummaryDexamethasone decreases the fibrinolytic activity in cultured medium of several cell types by an induction of PAI-1 synthesis. As a result of this enhanced PAI-1 synthesis a prothrombotic state is expected in patients treated with dexamethasone. However, such a prothrombotic state is not reported as a major adverse effect. We have studied the effects of dexamethasone (dose range: 0.1–3.0 mg/kg) on the fibrinolytic system of rats after a 5 day pretreatment period. It appeared that dexamethasone dose dependently decreased the fibrinolytic activity (a dose of 1 mg/kg showed a reduction of about 40%). This reduced fibrinolytic activity could be functionally translated into an increased thrombus size as measured with a venous thrombosis model: thrombus size was increased by 50% with 1 mg/kg dexamethasone. No effects could be measured on the coagulation system, but it appeared that ex-vivo measured platelet aggregation was dose dependently inhibited by dexamethasone treatment. This effect resulted in-vivo in prolonged obstruction times as measured with a modified aorta-loop model. These results indicate that the expected prothrombotic state due to a diminished fibrinolytic activity caused by dexamethasone is counterbalanced by an inhibition of platelet aggregation.


1985 ◽  
Vol 54 (02) ◽  
pp. 431-437 ◽  
Author(s):  
M J Dembélé-Duchesne ◽  
A Laghchim Lahlou ◽  
H Thaler-Dao ◽  
A Crastes de Paulet

SummaryHuman placental cytosol inhibits platelet aggregation induced by high doses of collagen. The aim of this study was to investigate whether this anti-aggregating activity was caused only by the presence of various activities already described in the placenta (an ADP-consuming enzyme, a fatty acid cyclooxygenase inhibitor, and a thromboxane synthetase inhibitor) or whether another factor was present.Heating the cytosol at 50° C for 6 min destroyed the inhibitor of collagen-induced aggregation. ADPase and the AA pathway inhibitors were not modified by this treatment. We therefore show the presence of an additional anti-aggregating factor: it is destroyed by heating at 50° C.We also tested for the presence of an inhibitor of AA release in the placental cytosol using three different methods (rabbit platelets in PRP, washed rabbit platelets, and NRK fibroblasts) but no inhibition could be evidenced.We conclude that this new anti-aggregating factor, which is probably a protein, acts neither through AA release inhibition nor AA cascade inhibition.


1984 ◽  
Vol 51 (03) ◽  
pp. 385-387 ◽  
Author(s):  
Clive J Dix ◽  
David G Hassall ◽  
K Richard Bruckdorfer

SummaryPlatelet-rich plasma was obtained 24 hr after the race ended from athletes who ran in the London marathon. The platelets were only marginally less sensitive to adrenaline than were those of non-runners using conventional aggregation tests. However, the runners’ platelets were much more sensitive to inhibition by prostacyclin, a prostaglandin synthesized by endothelial cells. It appeared that this effect was due to a greater activity in the platelets of the membrane-bound adenylate cyclase enzyme which generates intracellular cyclic AMP. Cyclic AMP production is known to be stimulated by prostacyclin and to cause the inhibition of platelet aggregation. The results indicate another possible protective effect of exercise against cardiovascular disease which is independent of the known changes in lipoprotein concentrations previously observed in athletes.


1979 ◽  
Vol 10 (4) ◽  
pp. 515-518
Author(s):  
Yasuo IKEDA ◽  
Keisuke TOYAMA ◽  
Mihoko YAMAMOTO ◽  
Kiyoaki WATANABE ◽  
Yasuhiko ANDO

Circulation ◽  
1995 ◽  
Vol 91 (2) ◽  
pp. 411-416 ◽  
Author(s):  
James A. Szalony ◽  
Neal F. Haas ◽  
Anita K. Salyers ◽  
Beatrice B. Taite ◽  
Nancy S. Nicholson ◽  
...  

2020 ◽  
Vol 41 (Supplement_1) ◽  
pp. S169-S170
Author(s):  
Angela R Jockheck-Clark ◽  
Cortes Williams ◽  
Christine Kowalczewski ◽  
Jahnabi Roy ◽  
Marc A Thompson ◽  
...  

Abstract Introduction During periods of delayed burn treatment, cells within the eschar leach toxic and immunomodulatory metabolites that can profoundly impact neighboring tissue. Therefore, to reduce the burn-related morbidities and mortalities that are the result of delayed surgical interventions, electrospinning was utilized to generate a novel cerium (III) nitrate (Ce(III)N) dressing. Previously published work has demonstrated that topical Ce(III)N application changes the eschar morphology, and that tissue beneath the treated eschar was generally healthy and had a high rate of graft acceptance. Methods Ce(III)N was dissolved with polyethylene oxide and spun onto a grounded rotating mandrel. The uni-axially spun mesh was compared to a co-axially electrospun dressing that contained a Ce(III)N core. Dressings were evaluated for topography/morphology, porosity and oxygen permeation using scanning electron microscopy, helium pycnometry, and a gas exchange chamber, respectively. Ce(III)N release rates were evaluated, as well as 60-day storage stability. Results All electrospun dressings contained functional Ce(III)N, with the co-axially spun dressing containing three times the amount of Ce(III)N as the traditionally spun dressing. Uni-axially and co-axially spun nanofibers had diameters of 1487±560 nm and 1071±147 nm, and porosities of 83.9% and 74.1%, respectively. Scaffolds released the majority of Ce(III)N within the first hour of wetting. Conclusions All dressings were capable of a burst of Ce(III)N release and maintained stability when stored at room temperature for 60 days. Applicability of Research to Practice Despite advancement in protective equipment worn by military personnel, the incidence of thermal injury is expected to rise in future conflicts. There are no burn wound dressings that can mitigate the pathophysiological processes associated with delayed burn wound treatment.


Sign in / Sign up

Export Citation Format

Share Document