scholarly journals Controlled Drug Delivery Systems: Current Status and Future Directions

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5905
Author(s):  
Shivakalyani Adepu ◽  
Seeram Ramakrishna

The drug delivery system enables the release of the active pharmaceutical ingredient to achieve a desired therapeutic response. Conventional drug delivery systems (tablets, capsules, syrups, ointments, etc.) suffer from poor bioavailability and fluctuations in plasma drug level and are unable to achieve sustained release. Without an efficient delivery mechanism, the whole therapeutic process can be rendered useless. Moreover, the drug has to be delivered at a specified controlled rate and at the target site as precisely as possible to achieve maximum efficacy and safety. Controlled drug delivery systems are developed to combat the problems associated with conventional drug delivery. There has been a tremendous evolution in controlled drug delivery systems from the past two decades ranging from macro scale and nano scale to intelligent targeted delivery. The initial part of this review provides a basic understanding of drug delivery systems with an emphasis on the pharmacokinetics of the drug. It also discusses the conventional drug delivery systems and their limitations. Further, controlled drug delivery systems are discussed in detail with the design considerations, classifications and drawings. In addition, nano-drug delivery, targeted and smart drug delivery using stimuli-responsive and intelligent biomaterials is discussed with recent key findings. The paper concludes with the challenges faced and future directions in controlled drug delivery.

Author(s):  
MOUSAMI S SAMANTA ◽  
DEEPAK GAUTAM ◽  
MUHAMMED WASIM CHANDEL ◽  
GAURANG SAWANT ◽  
KIRTI SHARMA

Over the past three decades, controlled drug delivery systems have become more developed and play a key role in pharmaceuticals formulations. There are many shortcomings in Traditional or Conventional drug delivery systems like for maintaining desired therapeutic drug plasma concentration there is a need for frequent dosing for particular drugs having shorter half-lives. Furthermore, because of frequent dosing requirement, there is poor patient compliance which causes fluctuation in plasma concentration of the drug. The limitations of conventional drug delivery can be overcome by the development of novel drug delivery systems, of which the controlled drug delivery can maintain constant drug plasma concentration by slowly releasing the drug over an extended period. Developing controlled drug delivery systems can also improve the systemic bioavailability of the drug, thus enhancing the therapeutic efficacy of the drug and better patient compliance. There are many different approaches for such controlled delivery systems such as liposomes, niosomes, ethosomes, phytosomes, microemulsion, and microspheres. Among all the approaches microspheres are more convenient as the drug is slowly released from the polymeric matrix and the polymers used are mostly biodegradable and possess no side effects. Therefore, microspheres can be used in various medicinal departments such as oncology, gynecology, radiology, pulmonary, cardiology, diabetes, and vaccine therapy. This review article focuses on recent different types of microspheres along with their methods of preparation. The microspheres formulated can be later evaluated and characterized by different procedures.


Author(s):  
Harshita Abul Barkat ◽  
Md Abul Barkat ◽  
Mohamad Taleuzzaman ◽  
Sabya Sachi Das ◽  
Md. Rizwanullah ◽  
...  

Nanotechnology-based drug-delivery systems, as an anticancer therapy tool, have shown significant potentials for the diagnosis and treatment of cancer. Recent studies have demonstrated that cancer therapy could be efficiently achieved by combinatorial therapies, approaches using multiple drug regimens for targeting cancers. However, their usages have been limited due to shorter half-lives of chemotherapeutic agents, insignificant targetability to tumor sites and suboptimal levels of co-administered conventional drug moieties. Thus, nanotechnology-based drug-delivery systems with effective targetability have played a crucial role to overcome the limitations and challenges associated with conventional therapies and also have provided greater therapeutic efficacy. Herein, the authors have focused on various drug-incorporated combinatorial nanocarrier systems, the significance of various receptors-associated strategies, and various targeted delivery approaches for chemotherapeutic agents.


Soft Matter ◽  
2021 ◽  
Author(s):  
Virna Margarita Martín Giménez ◽  
Geeta Arya ◽  
Ileana A. Succhi ◽  
Maria J. Galante ◽  
Walter Manucha

Conventional drug delivery systems often have several pharmacodynamic and pharmacokinetic limitations related to their low efficacy and bad safety. It is because these traditional systems cannot always be selectively addressed...


2022 ◽  
Vol 24 (1) ◽  
pp. 48-60
Author(s):  
Avani K. Shewale ◽  
◽  
Akshay R. Yadav ◽  
Ashwini S. Jadhav ◽  
◽  
...  

Most common methods of delivery include the preferred topical (skin), transmucosal (nasal, buccal, sublingual, vaginal, ocular and rectal) and inhalation routes. The conventional dosage forms provide drug release immediately and it causes fluctuation of drug level in blood depending upon dosage form. Therefore to maintain the drug concentration within therapeutically effective range needs novel drug delivery system. In the past few decades, considerable attention has been focused on the development of novel drug delivery system (NDDS). The NDDS should ideally fulfill two prerequisites. Firstly, it should deliver the drug at a rate directed by the needs of the body, over the period of treatment. Secondly, it should channel the active entity to the site of action. In conventional drug delivery systems, there is little or no control over release of the drug and effective concentration at the target site can be achieved by irregular administration of grossly excessive doses. At present, no available drug delivery system behaves ideally, but sincere attempts have been made to achieve them through various novel approaches in drug delivery.


2020 ◽  
Vol 27 (21) ◽  
pp. 3534-3554 ◽  
Author(s):  
Fan Jiang ◽  
Yunqi Zhu ◽  
Changyang Gong ◽  
Xin Wei

Atherosclerosis is the leading inducement of cardiovascular diseases, which ranks the first cause of global deaths. It is an arterial disease associated with dyslipidemia and changes in the composition of the vascular wall. Besides invasive surgical strategy, the current conservative clinical treatment for atherosclerosis falls into two categories, lipid regulating-based therapy and antiinflammatory therapy. However, the existing strategies based on conventional drug delivery systems have shown limited efficacy against disease development and plenty of side effects. Nanomedicine has great potential in the development of targeted therapy, controlled drug delivery and release, the design of novel specific drugs and diagnostic modalities, and biocompatible scaffolds with multifunctional characteristics, which has led to an evolution in the diagnosis and treatment of atherosclerosis. This paper will focus on the latest nanomedicine strategies for atherosclerosis diagnosis and treatment as well as discussing the potential therapeutic targets during atherosclerosis progress, which could form the basis of development of novel nanoplatform against atherosclerosis.


2020 ◽  
Vol 21 (11) ◽  
pp. 902-909
Author(s):  
Jingxin Zhang ◽  
Weiyue Shi ◽  
Gangqiang Xue ◽  
Qiang Ma ◽  
Haixin Cui ◽  
...  

Background: Among all cancers, lung cancer has high mortality among patients in most of the countries in the world. Targeted delivery of anticancer drugs can significantly reduce the side effects and dramatically improve the effects of the treatment. Folate, a suitable ligand, can be modified to the surface of tumor-selective drug delivery systems because it can selectively bind to the folate receptor, which is highly expressed on the surface of lung tumor cells. Objective: This study aimed to construct a kind of folate-targeted topotecan liposomes for investigating their efficacy and mechanism of action in the treatment of lung cancer in preclinical models. Methods: We conjugated topotecan liposomes with folate, and the liposomes were characterized by particle size, entrapment efficiency, cytotoxicity to A549 cells and in vitro release profile. Technical evaluations were performed on lung cancer A549 cells and xenografted A549 cancer cells in female nude mice, and the pharmacokinetics of the drug were evaluated in female SD rats. Results: The folate-targeted topotecan liposomes were proven to show effectiveness in targeting lung tumors. The anti-tumor effects of these liposomes were demonstrated by the decreased tumor volume and improved therapeutic efficacy. The folate-targeted topotecan liposomes also lengthened the topotecan blood circulation time. Conclusion: The folate-targeted topotecan liposomes are effective drug delivery systems and can be easily modified with folate, enabling the targeted liposomes to deliver topotecan to lung cancer cells and kill them, which could be used as potential carriers for lung chemotherapy.


2020 ◽  
Vol 17 ◽  
Author(s):  
Neeraj Mittal ◽  
Varun Garg ◽  
Sanjay Kumar Bhadada ◽  
O. P. Katare

: The corona virus disease 2019 (COVID-19) has found its roots from Wuhan (China). COVID-19 is caused by a novel corona virus SARS-CoV2, previously named as 2019-nCoV. COVID-19 has spread across the globe and declared as pandemic by World health organization (WHO) on 11th March, 2020. Currently, there is no standard drug or vaccine available for the treatment, so repurposing of existing drugs is the only solution. Novel drug delivery systems (NDDS) will be boon for the repurposing of drugs. The role of various NDDS in repurposing of existing drugs for treatment of various viral diseases and their relevance in COVID-19 has discussed in this paper. It focuses on the currently ongoing research in the implementation of NDDS in COVID-19. Moreover it describes the role of NDDS in vaccine development for COVID-19. This paper also emphasizes how NDDS will help to develop the improved delivery systems (dosage forms) of existing therapeutic agents and also explore the new insights to find out the void spaces for a potential targeted delivery. So in these tough times, NDDS and nanotechnology can be a safeguard to humanity.


Sign in / Sign up

Export Citation Format

Share Document