scholarly journals Heterogeneous Photocatalysis of Metronidazole in Aquatic Samples

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7612
Author(s):  
Klaudia Stando ◽  
Patrycja Kasprzyk ◽  
Ewa Felis ◽  
Sylwia Bajkacz

Metronidazole (MET) is a commonly detected contaminant in the environment. The compound is classified as poorly biodegradable and highly soluble in water. Heterogeneous photocatalysis is the most promoted water purification method due to the possibility of using sunlight and small amounts of a catalyst needed for the process. The aim of this study was to select conditions for photocatalytic removal of metronidazole from aquatic samples. The effect of catalyst type, mass, and irradiance intensity on the efficiency of metronidazole removal was determined. For this purpose, TiO2, ZnO, ZrO2, WO3, PbS, and their mixtures in a mass ratio of 1:1 were used. In this study, the transformation products formed were identified, and the mineralization degree of compound was determined. The efficiency of metronidazole removal depending on the type of catalyst was in the range of 50–95%. The highest MET conversion (95%) combined with a high degree of mineralization (70.3%) was obtained by using a mixture of 12.5 g TiO2–P25 + PbS (1:1; v/v) and running the process for 60 min at an irradiance of 1000 W m−2. Four MET degradation products were identified by untargeted analysis, formed by the rearrangement of the metronidazole and the C-C bond breaking.

1979 ◽  
Author(s):  
W. Nieuwenhuizen ◽  
I. A. M. van Ruijven-Vermeer ◽  
F. Haverkate ◽  
G. Timan

A novel method will be described for the preparation and purification of fibrin(ogen) degradation products in high yields. The high yields are due to two factors. on the one hand an improved preparation method in which the size heterogeneity of the degradation products D is strongly reduced by plasmin digestion at well-controlled calcium concentrations. At calcium concentrations of 2mM exclusively D fragments, M.W.= 93-000 (Dcate) were formed; in the presence of 1OmM EGTA only fragments M.W.= 80.000 (D EGTA) were formed as described. on the other hand a new purification method, which includes Sephadex G-200 filtration to purify the D:E complexes and separation of the D and E fragments by a 16 hrs. preparative isoelectric focussing. The latter step gives a complete separation of D (fragments) (pH = 6.5) and E fragments (at pH = 4.5) without any overlap, thus allowing a nearly 100% recovery in this step. The overall recoveries are around 75% of the theoretical values. These recoveries are superior to those of existing procedures. Moreover the conditions of this purification procedure are very mild and probably do not affect the native configuration of the products. Amino-terminal amino acids of human Dcate, D EGTA and D-dimer are identical i.e. val, asx and ser. in the ratgly, asx and ser were found. E 1% for rat Dcate=17-8 for rat D EGTA=16.2 and for rat D- dimer=l8.3. for the corresponding human fragments, these values were all 20.0 ± 0.2.


Toxics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 81
Author(s):  
Kamila Šrédlová ◽  
Kateřina Šírová ◽  
Tatiana Stella ◽  
Tomáš Cajthaml

Metabolites of polychlorinated biphenyls (PCBs)—hydroxylated PCBs (OH‑PCBs), chlorobenzyl alcohols (CB‑OHs), and chlorobenzaldehydes (CB‑CHOs)—were incubated in vitro with the extracellular liquid of Pleurotus ostreatus, which contains mainly laccase and low manganese-dependent peroxidase (MnP) activity. The enzymes were able to decrease the amount of most of the tested OH‑PCBs by > 80% within 1 h; the removal of more recalcitrant OH‑PCBs was greatly enhanced by the addition of the laccase mediator syringaldehyde. Conversely, glutathione substantially hindered the reaction, suggesting that it acted as a laccase inhibitor. Hydroxylated dibenzofuran and chlorobenzoic acid were identified as transformation products of OH‑PCBs. The extracellular enzymes also oxidized the CB‑OHs to the corresponding CB‑CHOs on the order of hours to days; however, the mediated and nonmediated setups exhibited only slight differences, and the participating enzymes could not be determined. When CB‑CHOs were used as the substrates, only partial transformation was observed. In an additional experiment, the extracellular liquid of Irpex lacteus, which contains predominantly MnP, was able to efficiently transform CB‑CHOs with the aid of glutathione; mono‑ and di-chloroacetophenones were detected as transformation products. These results demonstrate that extracellular enzymes of ligninolytic fungi can act on a wide range of PCB metabolites, emphasizing their potential for bioremediation.


2021 ◽  
Vol 02 ◽  
Author(s):  
Emmanuel M. de la Fournière ◽  
Jorge M. Meichtry ◽  
Graciela S. Custo ◽  
Eduardo A. Gautier ◽  
Marta I. Litter

Background: Thiomersal (TM), a complex between 2-mercaptobenzoic acid (2-MBA) and ethylmercury (C2H5Hg+), is an antimicrobial preservative used in immunological, ophthalmic, cosmetic products, and vaccines. Objective: TM has been treated by UV/TiO2 photocatalysis in the presence or absence of oxygen at acidic pH. C2H5Hg+, 2-MBA, and 2-sulfobenzoic acid (2-SBA) were found as products. A 2-SBA photocatalytic treatment was undertaken to study sulfur evolution. Methods: Photocatalytic runs were performed using a UVA lamp (λmax = 352 nm), open to the air or under N2. A suspension of the corresponding TM or 2-SBA salt and TiO2 was prepared, and pH was adjusted. Suspensions were stirred in the dark for 30 min and then irradiated. TM, 2-MBA, 2-SBA, and C2H5Hg+ were quantified by HPLC, sulfur by TXRF, and the deposits on the photocatalyst were analyzed by chemical reactions. The mineralization degree was followed by TOC. Sulfate was determined using BaCl2 at 580 nm. Results: Photocatalytic destruction of TM and total C2H5Hg+ was complete under N2 and air, but TM degradation was much faster in air. The evolution of TM and the products followed a pseudo-first-order kinetics. Conclusion: TiO2-photocatalytic degradation is a suitable technique for the treatment of TM and its degradation products. In contrast to other organomercurial compounds, TM degradation is faster in the presence of O2, indicating that the oxidative mechanism is the preferred pathway. A significant TM mineralization (> 60%, NPOC and total S) was obtained. TM was more easily degraded than 2-SBA. Sulfate was the final product.


1994 ◽  
Vol 41 (4) ◽  
pp. 467-471 ◽  
Author(s):  
A Dzikowska ◽  
J P Le Caer ◽  
P Jonczyk ◽  
P Wëgleński

Arginase (EC 3.5.3.1) of Aspergillus nidulans, the enzyme which enables the fungus to use arginine as the sole nitrogen source was purified to homogeneity. Molecular mass of the purified arginase subunit is 40 kDa and is similar to that reported for the Neurospora crassa (38.3 kDa) and Saccharomyces cerevisiae (39 kDa) enzymes. The native molecular mass of arginase is 125 kDa. The subunit/native molecular mass ratio suggests a trimeric form of the protein. The arginase protein was cleaved and partially sequenced. Two out of the six polypeptides sequenced show a high degree of homology to conserved domains in arginases from other species.


2021 ◽  
Author(s):  
Julie Becher ◽  
Samuel Beal ◽  
Susan Taylor ◽  
Katerina Dontsova ◽  
Dean Wilcox

Two major components of insensitive munition formulations, nitroguanidine (NQ) and 3-nitro-1,2,4-triazol-5-one (NTO), are highly water soluble and therefore likely to photo-transform while in solution in the environment. The ecotoxicities of NQ and NTO solutions are known to increase with UV exposure, but a detailed accounting of aqueous degradation rates, products, and pathways under different exposure wavelengths is currently lacking. We irradiated aqueous solutions of NQ and NTO over a 32-h period at three ultraviolet wavelengths and analyzed their degradation rates and transformation products. NQ was completely degraded by 30 min at 254 nm and by 4 h at 300 nm, but it was only 10% degraded after 32 h at 350 nm. Mass recoveries of NQ and its transformation products were >80% for all three wavelengths. NTO degradation was greatest at 300 nm with 3% remaining after 32 h, followed by 254 nm (7% remaining) and 350 nm (20% remaining). Mass recoveries of NTO and its transformation products were high for the first 8 h but decreased to 22–48% by 32 h. Environmental half-lives of NQ and NTO in pure water were estimated as 4 and 6 days, respectively. We propose photo-degradation pathways for NQ and NTO supported by observed and quantified degradation products and changes in solution pH.


1998 ◽  
Vol 42 (10) ◽  
pp. 2602-2606 ◽  
Author(s):  
Klaus Stoeckel ◽  
Werner Hofheinz ◽  
Jean Paul Laneury ◽  
Patrick Duchene ◽  
Steve Shedlofsky ◽  
...  

ABSTRACT The levels of degradation of cefetamet pivoxil (CAT), cefuroxime axetil (CAE), and cefpodoxime proxetil (CPD) in 0.6 M phosphate buffer (pH 7.4) and human intestinal juice (pH 7.4) at 37°C over 24 h were compared. Significant differences in the time courses of degradation and in the patterns of degradation products were observed. (i) The relative proportions of the Δ2- and Δ3-cephalosporins were roughly reversed in the two incubation media. In phosphate buffer, the major degradation product was the Δ2-cephalosporin (CAT = 61%; CAE = 74%; CPD = 85%), while in intestinal juice it was the Δ3-cephalosporin (CAT = 86%; CAE = 75%; CPD = 87%). (ii) Generally, the degradation of the prodrug esters progressed faster in intestinal juice than in phosphate buffer (e.g., for CAT the half-lives [t 1/2s] were 0.78 and 4.3 h, respectively). (iii) The two diastereoisomers of CAE and CPD were degraded at different rates in intestinal juice (for the CAE diasteroisomers, t 1/2s = 0.37 and 0.93 h; for the CPD diastereoisomers,t 1/2s = 0.18 and 0.98 h) but were degraded at similar rates in phosphate buffer (for the CAE diastereoisomers, t 1/2 = 1.6 h; for the CPD t 1/2 diastereoisomers, = 2.2 h). It is concluded that (i) the Δ2 isomerization does not significantly affect the bioavailability of prodrug esters since enzymatic hydrolysis in the intestinal fluid proceeds mainly to the active Δ3-cephalosporin and (ii) the high degree of stereoselectivity of the enzymatic ester hydrolysis should make it possible to increase the bioavailabilities of certain prodrug esters (CAE, CPD) by using the more stable diasterioisomer.


Toxics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 213
Author(s):  
Minghao Li ◽  
Wei He ◽  
Hao Yang ◽  
Shimei Sun ◽  
Yu Li

The complementary construction of polychlorinated biphenyl (PCB) phytotoxicity and the biotoxicity 3D-QSAR model, combined with the constructed PCB environmental risk characterization model, was carried out to evaluate the persistent organic pollutant (POP) properties (toxicity (phytotoxicity and biotoxicity), bioconcentration, migration, and persistence) of PCBs and their corresponding transformation products (phytodegradation, microbial degradation, biometabolism, and photodegradation). The transformation path with a significant increase in environmental risks was analyzed. Some environmentally friendly PCB derivatives, exhibiting a good modification effect, and their parent molecules were selected as precursor molecules. Their transformation processes were simulated and evaluated for assessing the environmental risks. Some transformation products displayed increased environmental risks. The environmental risks of plant degradation products of the PCBs in the environmental media showed the maximum risk, indicating that the potential risks of the transformation products of the PCBs and their environmentally friendly derivatives could not be neglected. It is essential to further improve the ability of plants to degrade their transformation products. The improvement of some degradation products for environmentally friendly PCB derivatives indicates that the theoretical modification of a single environmental feature cannot completely control the potential environmental risks of molecules. In addition, this method can be used to analyze and evaluate environmentally friendly PCB derivatives to avoid and reduce the potential environmental and human health risks caused by environmentally friendly PCB derivatives.


2014 ◽  
Vol 50 (1) ◽  
pp. 83-86 ◽  
Author(s):  
J.J. Wu ◽  
M. Xu ◽  
K.B. Liu ◽  
W.H. Ma ◽  
B. Yang ◽  
...  

A new purification method of removing boron from metallurgical grade silicon (MG-Si) using a high baisicity slag was developed in this paper. The typical impurities Al, Ca, Ti, B, P etc in MG-Si can be removed by the binary calcium sillicate slag and it is especially efficient for removing impurity Boron. It was found that the maximal distribution coefficient of boron between calcium sillicate slag and silicon reaches to 1.57 when the mass ratio of CaO/SiO2 was 1.5 and the composition was 60%CaO-40%SiO2. It showed that the oxidizability of calcium sillicate slag was affected and restricted by the basicity and the mass ratio of acid oxide SiO slag according to the thermodynamic relationship. The boron concentration in MG-Si can be reduced from 18x10-6 to 4.5x10-6 and 1.4x10-6, respectively, when using the ternary slags 40.5%CaO-49.5%SiO2-10%Li2O and 32CaO-38%SiO2-30%Li2O.


Sign in / Sign up

Export Citation Format

Share Document