scholarly journals Optimization of Flavonoid Extraction from Xanthoceras sorbifolia Bunge Flowers, and the Antioxidant and Antibacterial Capacity of the Extract

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 113
Author(s):  
Henghui Zhang ◽  
Xiaoli Wang ◽  
Dongliang He ◽  
Dongliang Zou ◽  
Runzhu Zhao ◽  
...  

In the present work, the extraction process of total flavonoids (TFs) from X. sorbifolia flowers by ultrasound-assisted extraction was optimized under the response surface methodology (RSM) on the basis of single-factor experiments. The optimal extraction conditions were as follows: ethanol concentration of 80%, solid–liquid ratio of 1:37 (g/mL), temperature of 84 °C, and extraction time of 1 h. Under the optimized conditions, the extraction yield of the TFs was 3.956 ± 0.04%. The radical scavenging capacities of TFs against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) were much greater than that of rutin. The results of antibacterial experiments indicated that the TFs displayed strong inhibitory activities on E. coli, S. aureus and Bacillus subtilis. Therefore, X. sorbifolia flowers can be used as a novel source of natural flavonoids, and the TFs have potential applications as natural antioxidants or antibacterial agents in the food and pharmaceutical industries.

2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Liliana S. Celaya ◽  
Carmen I. Viturro ◽  
Luís R. Silva ◽  
Silvia Moreno

The aim of this study was to optimize the extraction of antioxidant compounds from Schinus areira leaves using  ultrasound assisted extraction and response surface methodology. The effect of sonication time and plant material:solvent ratio were used to optimize the recovery. Results showed that a high recovery of antioxidant compounds from leaves of three different S. areira specimens was achieved under optimized conditions. The leaf extracts obtained displayed a DPPH (1,1-Diphenyl-2-picrylhydrazyl) radical scavenging activity analogous to the well-known antioxidant trolox  (EC50 = 23-46 vs 36.1 µg/mL, respectively). In addition, these extracts showed a good potency to eliminate superoxide and nitric oxide-radicals as well as a moderate antimicrobial activity against gram positive Staphylococcus aureus and Enterococcus faecalis and yeast. HPLC chromatography analysis of the three S. areira leaf extracts showed different high contents of kaempferol-3-O-rutinoside, quercetin-3-O-galactoside and 3-O-caffeoylquinic acid. The results showed that the S. areira leaf extracts contained a high amount of antioxidant phenolic compounds, which might be a valuable source to be used as additives in plant-based foods.


Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 389 ◽  
Author(s):  
Adane Tilahun Getachew ◽  
Charlotte Jacobsen ◽  
Susan Løvstad Holdt

Natural phenolic compounds are important classes of plant, microorganism, and algal secondary metabolites. They have well-documented beneficial biological activities. The marine environment is less explored than other environments but have huge potential for the discovery of new unique compounds with potential applications in, e.g., food, cosmetics, and pharmaceutical industries. To survive in a very harsh and challenging environment, marine organisms like several seaweed (macroalgae) species produce and accumulate several secondary metabolites, including marine phenolics in the cells. Traditionally, these compounds were extracted from their sample matrix using organic solvents. This conventional extraction method had several drawbacks such as a long extraction time, low extraction yield, co-extraction of other compounds, and usage of a huge volume of one or more organic solvents, which consequently results in environmental pollution. To mitigate these drawbacks, newly emerging technologies, such as enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE) have received huge interest from researchers around the world. Therefore, in this review, the most recent and emerging technologies are discussed for the extraction of marine phenolic compounds of interest for their antioxidant and other bioactivity in, e.g., cosmetic and food industry. Moreover, the opportunities and the bottleneck for upscaling of these technologies are also presented.


2020 ◽  
Vol 11 (2) ◽  
pp. 9318-9334

Bael fruit is an abundant source of bioactive compounds that have importance in the food and pharmaceutical industries. The process of extraction of the bael fruit juice produced a higher percentage of bael fruit pulp waste (BFPW) (37.33 %), which was recycled for the extraction of bioactive compounds. Thus the bioactive compounds like polyphenols, flavonoids, and carotenoids were extracted from BFPW by using the ultrasound-assisted extraction (UAE) technique. The modeling and optimization of the extraction process were carried out by using the experimental design of response surface methodology (RSM). The ethanol concentration of 51.22 %, ultrasound amplitude of 51.45 %, and ultrasound treatment time of 6.11 minutes were obtained to be an RSM optimized values of extraction process variables. The lower values of root mean squared error (RMSE) and mean absolute error (MAE) and higher values of coefficient of determination (R2) indicated admissibility and acceptability of RSM. This extraction process of bioactive compounds has the potential to implement it on an industrial scale for the formulation of food additives and medicines.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 386
Author(s):  
Luana Beatriz dos Santos Nascimento ◽  
Antonella Gori ◽  
Ilaria Degano ◽  
Alessandro Mandoli ◽  
Francesco Ferrini ◽  
...  

Fruit extracts of Sambucus nigra L. (elderberry) and Punica granatum L. (pomegranate) have several applications in nutraceutical, cosmetics, and pharmaceutical industries thanks to their richness in antioxidant polyphenols, whose composition changes with the extraction method applied. We aimed to compare the efficiency of the fermentation extraction, recently applied by industries, with the ultrasound-assisted extraction–UAE, a well-known and efficient technique, on the yield of antioxidant polyphenols from elderberry fruits and pomegranate fruit-peels. Extracts were obtained by both methods, analyzed by high-performance liquid chromatography (HPLC) and the antioxidant capacities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Hydroxyl Radical Scavenging (HRS) assays. The main compounds detected in elderberry were caffeoyl and quercetin derivatives, present in higher amounts in UAE extracts. In pomegranate, punicalagin were the main constituents, also detected in higher contents in the UAE extracts compared to fermented ones. The UAE was more suitable for extracting anthocyanins from pomegranate. In addition, higher antioxidant capacities were observed in UAE extracts, possibly due to their richness in polyphenols. Therefore, despite the recent wide applicability and the good performance of the fermentation process, the UAE may be considered more efficient for the extraction of polyphenols from S. nigra and P. granatum fruits and may be used to obtain polyphenolic antioxidant extracts to be applied by several industries.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 322 ◽  
Author(s):  
Mircea Oroian ◽  
Florin Ursachi ◽  
Florina Dranca

The aim of this study was to evaluate the extraction efficiency of polyphenols from crude pollen by an ultrasonic process. Prior to the polyphenols extraction, the crude pollen was defatted. The extraction from defatted pollen was carried out by varying four extraction parameters: ultrasonic amplitude (20%, 60% and 100%), solid/liquid ratio (10 g/L, 20 g/L and 30 g/L), temperature (35, 50 and 65 °C) and time (10, 20 and 30 min). The extracts were analyzed in terms of extraction yield (%), total phenolic content (TPC) and total flavones content (TFC). The extracted oil was analyzed in terms of fatty acids composition; myristic acid (159.1 µg × g−1) and cis-14-pentadecenoic acid (106.6 µg·g−1) were found in the highest amount in the pollen oil. The optimum conditions of extraction were determined and were, as follows: 100% amplitude of ultrasonic treatment, 30 g/L solid/liquid ratio, 40.85 °C and 14.30 min, which led to the extraction of 366.1 mg GAE/L of TPC and 592.2 mg QE/g of TFC, and also to an extraction yield of 1.92%.


2019 ◽  
Vol 92 (3) ◽  
pp. 369-377
Author(s):  
Barbara Fumić ◽  
Mario Jug ◽  
Marijana Zovko Končić

Ultrasound-assisted extraction of phenolic antioxidants from Lotus corniculatus was optimized using response surface methodology. The extraction was performed according to the Box–Behnken design with ethanol concentration, temperature, and pH, as independent variables. The responses were extraction yield, DPPH radical scavenging activity (RSA) IC50 and content of different phenolic compounds (total phenols, flavonoids and phenolic acids, as well as quercetin, kaempferol and genistein derivatives). The models were used to calculate best conditions for maximal extraction of phenolic compounds and antiradical activity. Use of the optimized extraction parameters increased the content of quercetin and kaempferol derivatives more than tenfold (from 6.07 to 65.10 mg mL–1 and 6.69 to 92.75 mg mL–1, respectively). The results of this work stress the importance of careful selection of conditions for flavonoids extraction. Abundance of bioactive phenolics in L. corniculatus extracts obtained under optimized extraction conditions opens the possibility for wider utilization of this plant.


2018 ◽  
Vol 83 (11) ◽  
pp. 1273-1284 ◽  
Author(s):  
Marijana Gavrilovic ◽  
Katarina Rajkovic ◽  
Valentina Simic ◽  
Sanja Jeremic ◽  
Snjezana Mirkovic ◽  
...  

The ultrasound-assisted extraction of Juglans nigra L. leaves was optimized with respect to total phenolic content (TP) of the extracts by varying the concentration of aqueous ethanol solution (E) and different solvent-to-solid ratio (S). The influence and optimum of the operating parameters (E and S) was examined using response surface methodology (RSM). The statistical criteria indicated the adequacy, reliability and precision of the developed RSM model. RSM showed that maximum extraction yield of TP 28.59 mg g-1 of draw plant was achieved at the optimal values of 50% E and 20 kg kg-1 S. Using the modelled optimized conditions, the detected relative difference between the predicted and the experimental yield was ?2.3 %. The determined TP content in the extracts varied from 12.54 to 29.26 mg GAE g-1 of dry plant indicated that J. nigra is a valuable source of phenolic substances. The extracts of J. nigra leaves obtained under optimal conditions showed good antioxidant activity (IC50 = 18.91?0.03 ?g cm-3) which was determined by the scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radical. The optimization of the TP extraction process is the important step in improving techno-economics of the potential commercial preparation of J. nigra extracts, as natural source of antioxidants.


2018 ◽  
Vol 152 ◽  
pp. 01002 ◽  
Author(s):  
Chua Bee Lin ◽  
Chong Yek Cze

Banana peels which are the waste in abundance, are used to extract valuable pectin. The gelling ability of the pectin has gained attention in food and pharmaceutical industries. This research aims to select the best drying kinetic model for banana peels and also optimize the pectin extraction process using Box-Behnken response surface design (BBD). Determination of pectin gelling mechanism using degree of esterification (DE) is also focused in this research. In this study, oven drying with temperature 50°C was chosen as the best drying temperature due to highest extraction yield. Furthermore, Page-Two-term model was selected as the best model to describe the drying kinetics of banana peels due to highest R2 value (0.9991) and lowest RMSE value (0.001). The optimal extraction conditions given by BBD were 75°C extraction temperature, 23 min extraction time and 1:33.3 g/ml solid-liquid ratio. Likewise, the DE for both pectins extracted using unoptimised and optimised conditions were 71.92±1.38% and 76.1±2.07% respectively. Both of the pectins were classified as high-methoxyl pectins. The pectin with higher DE also indicated that the rate of gel formation is higher. The results showed that the pectin yield and gelling time has successfully improved after optimised the pectin extraction process.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 500
Author(s):  
Javier Echave ◽  
Maria Fraga-Corral ◽  
Pascual Garcia-Perez ◽  
Jelena Popović-Djordjević ◽  
Edina H. Avdović ◽  
...  

Seaweeds are industrially exploited for obtaining pigments, polysaccharides, or phenolic compounds with application in diverse fields. Nevertheless, their rich composition in fiber, minerals, and proteins, has pointed them as a useful source of these components. Seaweed proteins are nutritionally valuable and include several specific enzymes, glycoproteins, cell wall-attached proteins, phycobiliproteins, lectins, or peptides. Extraction of seaweed proteins requires the application of disruptive methods due to the heterogeneous cell wall composition of each macroalgae group. Hence, non-protein molecules like phenolics or polysaccharides may also be co-extracted, affecting the extraction yield. Therefore, depending on the macroalgae and target protein characteristics, the sample pretreatment, extraction and purification techniques must be carefully chosen. Traditional methods like solid–liquid or enzyme-assisted extraction (SLE or EAE) have proven successful. However, alternative techniques as ultrasound- or microwave-assisted extraction (UAE or MAE) can be more efficient. To obtain protein hydrolysates, these proteins are subjected to hydrolyzation reactions, whether with proteases or physical or chemical treatments that disrupt the proteins native folding. These hydrolysates and derived peptides are accounted for bioactive properties, like antioxidant, anti-inflammatory, antimicrobial, or antihypertensive activities, which can be applied to different sectors. In this work, current methods and challenges for protein extraction and purification from seaweeds are addressed, focusing on their potential industrial applications in the food, cosmetic, and pharmaceutical industries.


Sign in / Sign up

Export Citation Format

Share Document