scholarly journals Comparison of the Level and Mechanisms of Toxicity of Carbon Nanotubes, Carbon Nanofibers, and Silicon Nanotubes in Bioassay with Four Marine Microalgae

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 485 ◽  
Author(s):  
Konstantin Pikula ◽  
Vladimir Chaika ◽  
Alexander Zakharenko ◽  
Zhanna Markina ◽  
Aleksey Vedyagin ◽  
...  

Nanoparticles (NPs) have various applications in medicine, cosmetics, optics, catalysis, environmental purification, and other areas nowadays. With an increasing annual production of NPs, the risks of their harmful influence to the environment and human health is rising. Currently, our knowledge about the mechanisms of interaction between NPs and living organisms is limited. Additionally, poor understanding of how physical and chemical characteristic and different conditions influence the toxicity of NPs restrict our attempts to develop the standards and regulations which might allow us to maintain safe living conditions. The marine species and their habitat environment are under continuous stress due to anthropogenic activities which result in the appearance of NPs in the aquatic environment. Our study aimed to evaluate and compare biochemical effects caused by the influence of different types of carbon nanotubes, carbon nanofibers, and silica nanotubes on four marine microalgae species. We evaluated the changes in growth-rate, esterase activity, membrane polarization, and size changes of microalgae cells using flow cytometry method. Our results demonstrated that toxic effects caused by the carbon nanotubes strongly correlated with the content of heavy metal impurities in the NPs. More hydrophobic carbon NPs with less ordered structure had a higher impact on the red microalgae P. purpureum because of higher adherence between the particles and mucous covering of the algae. Silica NPs caused significant inhibition of microalgae growth-rate predominantly produced by mechanical influence.

Author(s):  
Konstantin Pikula ◽  
Vladimir Chaika ◽  
Alexander Zakharenko ◽  
Zhanna Markina ◽  
Aleksey A. Vedyagin ◽  
...  

Nanoparticles (NPs) have various applications in medicine, cosmetics, optics, catalysis, environmental purification, and other areas nowadays. With an increasing annual production of NPs, the risks of their harmful influence to the environment and human health is rising. Currently, our knowledge about the mechanisms of interaction between NPs and living organisms is limited. Additionally, poor understanding of how physical and chemical characteristic and different conditions influence the toxicity of NPs restrict our attempts to develop the standards and regulations which might allow us to maintain the safe living conditions. The marine species and their habitat environment are under continuous stress due to anthropogenic activities which result in the appearance of NPs in the aquatic environment. Our study aimed to evaluate and compare biochemical effects caused by the influence of different types of carbon nanotubes, carbon nanofibers, and silica nanotubes on four marine microalgae species. We have evaluated the changes in growth-rate, esterase activity, membrane polarization, and size changes of microalgae cells using flow cytometry method. Our results demonstrated that toxic effects caused by the carbon nanotubes strongly correlated with the content of heavy metal impurities in the NPs. More hydrophobic carbon NPs with less ordered structure had a higher impact on the red microalgae P. purpureum because of higher adherence between the particles and mucous covering of the algae; silica NPs caused significant inhibition of microalgae growth-rate predominantly produced by mechanical influence.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 827 ◽  
Author(s):  
Konstantin Pikula ◽  
Vladimir Chaika ◽  
Alexander Zakharenko ◽  
Anastasia Savelyeva ◽  
Irina Kirsanova ◽  
...  

Nanoparticles (NPs) have broad applications in medicine, cosmetics, optics, catalysis, environmental purification, and other areas nowadays. With increasing annual production of NPs, the risks of their harmful influence on the environment and human health are also increasing. Currently, our knowledge about the mechanisms of the interaction between NPs and living organisms is limited. The marine species and their habitat environment are under continuous stress owing to the anthropogenic activities, which result in the release of NPs in the aquatic environment. We used a bioassay model with hemocytes of three bivalve mollusc species, namely, Crenomytilus grayanus, Modiolus modiolus, and Arca boucardi, to evaluate the toxicity of 10 different types of NPs. Specifically, we compared the cytotoxic effects and cell-membrane polarization changes in the hemocytes exposed to carbon nanotubes, carbon nanofibers, silicon nanotubes, cadmium and zinc sulfides, Au-NPs, and TiO2 NPs. Viability and the changes in hemocyte membrane polarization were measured by the flow cytometry method. The highest aquatic toxicity was registered for metal-based NPs, which caused cytotoxicity to the hemocytes of all the studied bivalve species. Our results also highlighted different sensitivities of the used tested mollusc species to specific NPs.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 794
Author(s):  
Cullen Horstmann ◽  
Victoria Davenport ◽  
Min Zhang ◽  
Alyse Peters ◽  
Kyoungtae Kim

Next-generation sequencing (NGS) technology has revolutionized sequence-based research. In recent years, high-throughput sequencing has become the method of choice in studying the toxicity of chemical agents through observing and measuring changes in transcript levels. Engineered nanomaterial (ENM)-toxicity has become a major field of research and has adopted microarray and newer RNA-Seq methods. Recently, nanotechnology has become a promising tool in the diagnosis and treatment of several diseases in humans. However, due to their high stability, they are likely capable of remaining in the body and environment for long periods of time. Their mechanisms of toxicity and long-lasting effects on our health is still poorly understood. This review explores the effects of three ENMs including carbon nanotubes (CNTs), quantum dots (QDs), and Ag nanoparticles (AgNPs) by cross examining publications on transcriptomic changes induced by these nanomaterials.


2021 ◽  
Vol 64 (1) ◽  
pp. 13-18
Author(s):  
Ira Gray ◽  
Lindsay A. Green-Gavrielidis ◽  
Carol Thornber

Abstract Caffeine is present in coastal environments worldwide and there is a need to assess its impact on marine organisms. Here, we exposed two species of ecologically important marine macroalgae (Chondrus crispus and Codium fragile subsp. fragile) to a suite of caffeine concentrations and measured their response. Caffeine concentrations of 10–100 ng L−1 had no significant effect on the growth rate or photosynthetic efficiency of either algae. Extremely high concentrations (100–200 mg L−1), which may occur acutely, produced sublethal effects for both species and mortality in C. fragile subsp. fragile. Our results highlight the need to understand how caffeine impacts marine species.


2019 ◽  
Vol 780 ◽  
pp. 680-689 ◽  
Author(s):  
Khaled Tawfik Alali ◽  
Jingyuan Liu ◽  
Kassem Aljebawi ◽  
Qi Liu ◽  
Rongrong Chen ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1354 ◽  
Author(s):  
Fanrong Zeng ◽  
Munazza Zahoor ◽  
Muhammad Waseem ◽  
Alia Anayat ◽  
Muhammad Rizwan ◽  
...  

Chromium (Cr) is recognized as a toxic metal that has detrimental effects on living organisms; notably, it is discharged into soil by various industries as a result of anthropogenic activities. Microbe-assisted phytoremediation is one of the most emergent and environmentally friendly methods used for the detoxification of pollutants. In this study, the alleviative role of Staphylococcus aureus strain K1 was evaluated in wheat (Triticum aestivum L.) under Cr stress. For this, various Cr concentrations (0, 25, 50 and 100 mg·kg−1) with and without peat-moss-based bacterial inoculum were applied in the soil. Results depicted that Cr stress reduced the plants’ growth by causing oxidative stress in the absence of S. aureus K1 inoculation. However, the application of S. aureus K1 regulated the plants’ growth and antioxidant enzymatic activities by reducing oxidative stress and Cr toxicity through conversion of Cr6+ to Cr3+. The Cr6+ uptake by wheat was significantly reduced in the S. aureus K1 inoculated plants. It can be concluded that the application of S. aureus K1 could be an effective approach to alleviate the Cr toxicity in wheat and probably in other cereals grown under Cr stress.


2019 ◽  
pp. 127-136
Author(s):  
Fiorito Silvana ◽  
Annalucia Serafino

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Shuang-Xi Xue ◽  
Qin-Tao Li ◽  
Xian-Rui Zhao ◽  
Qin-Yi Shi ◽  
Zhi-Gang Li ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) were irradiated by 1.2 keV Ar ion beams for 15–60 min at room temperature with current density of 60 µA/cm2. The morphology and microstructure are investigated by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results show that carbon nanofibers are achieved after 60 min ion irradiation and the formation of carbon nanofibers proceeds through four periods, carbon nanotubes—amorphous carbon nanowires—carbon nanoparticles along the tube axis—conical protrusions on the nanoparticles surface—carbon nanofibers from the conical protrusions.


Sign in / Sign up

Export Citation Format

Share Document