scholarly journals Carbon Dot Nanoparticles Exert Inhibitory Effects on Human Platelets and Reduce Mortality in Mice with Acute Pulmonary Thromboembolism

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1254
Author(s):  
Tzu-Yin Lee ◽  
Thanasekaran Jayakumar ◽  
Pounraj Thanasekaran ◽  
King-Chuen Lin ◽  
Hui-Min Chen ◽  
...  

The inhibition of platelet activation is considered a potential therapeutic strategy for the treatment of arterial thrombotic diseases; therefore, maintaining platelets in their inactive state has garnered much attention. In recent years, nanoparticles have emerged as important players in modern medicine, but potential interactions between them and platelets remain to be extensively investigated. Herein, we synthesized a new type of carbon dot (CDOT) nanoparticle and investigated its potential as a new antiplatelet agent. This nanoparticle exerted a potent inhibitory effect in collagen-stimulated human platelet aggregation. Further, it did not induce cytotoxic effects, as evidenced in a lactate dehydrogenase assay, and inhibited collagen-activated protein kinase C (PKC) activation and Akt (protein kinase B), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) phosphorylation. The bleeding time, a major side-effect of using antiplatelet agents, was unaffected in CDOT-treated mice. Moreover, our CDOT could reduce mortality in mice with ADP-induced acute pulmonary thromboembolism. Overall, CDOT is effective against platelet activation in vitro via reduction of the phospholipase C/PKC cascade, consequently suppressing the activation of MAPK. Accordingly, this study affords the validation that CDOT has the potential to serve as a therapeutic agent for the treatment of arterial thromboembolic disorders

2009 ◽  
Vol 37 (5) ◽  
pp. 1080-1084 ◽  
Author(s):  
Charles H. Large ◽  
Elena Di Daniel ◽  
Xingbao Li ◽  
Mark S. George

One strategy to understand bipolar disorder is to study the mechanism of action of mood-stabilizing drugs, such as valproic acid and lithium. This approach has implicated a number of intracellular signalling elements, such as GSK3β (glycogen synthase kinase 3β), ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) or protein kinase C. However, lamotrigine does not seem to modulate any of these targets, which is intriguing given that its profile in the clinic differs from that of valproic acid or lithium, with greater efficacy to prevent episodes of depression than mania. The primary target of lamotrigine is the voltage-gated sodium channel, but it is unclear why inhibition of these channels might confer antidepressant efficacy. In healthy volunteers, we found that lamotrigine had a facilitatory effect on the BOLD (blood-oxygen-level-dependent) response to TMS (transcranial magnetic stimulation) of the prefrontal cortex. This effect was in contrast with an inhibitory effect of lamotrigine when TMS was applied over the motor cortex. In a follow-up study, a similar prefrontal specific facilitatory effect was observed in a larger cohort of healthy subjects, whereas valproic acid inhibited motor and prefrontal cortical TMS-induced BOLD response. In vitro, we found that lamotrigine (3–10 μM) enhanced the power of gamma frequency network oscillations induced by kainic acid in the rat hippocampus, an effect that was not observed with valproic acid (100 μM). These data suggest that lamotrigine has a positive effect on corticolimbic network function that may differentiate it from other mood stabilizers. The results are also consistent with the notion of corticolimbic network dysfunction in bipolar disorder.


2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Johanna J. Sjölander ◽  
Agata Tarczykowska ◽  
Cecilia Picazo ◽  
Itziar Cossio ◽  
Itedale Namro Redwan ◽  
...  

ABSTRACT Oxidation of a highly conserved cysteine (Cys) residue located in the kinase activation loop of mitogen-activated protein kinase kinases (MAPKK) inactivates mammalian MKK6. This residue is conserved in the fission yeast Schizosaccharomyces pombe MAPKK Wis1, which belongs to the H2O2-responsive MAPK Sty1 pathway. Here, we show that H2O2 reversibly inactivates Wis1 through this residue (C458) in vitro. We found that C458 is oxidized in vivo and that serine replacement of this residue significantly enhances Wis1 activation upon addition of H2O2. The allosteric MAPKK inhibitor INR119, which binds in a pocket next to the activation loop and C458, prevented the inhibition of Wis1 by H2O2 in vitro and significantly increased Wis1 activation by low levels of H2O2 in vivo. We propose that oxidation of C458 inhibits Wis1 and that INR119 cancels out this inhibitory effect by binding close to this residue. Kinase inhibition through the oxidation of a conserved Cys residue in MKK6 (C196) is thus conserved in the S. pombe MAPKK Wis1.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ye-Ming Lee ◽  
Kuo-Hsien Hsieh ◽  
Wan-Jung Lu ◽  
Hsiu-Chu Chou ◽  
Duen-Suey Chou ◽  
...  

Xanthohumol is the principal prenylated flavonoid in the hop plant (Humulus lupulusL.). Xanthohumol was found to be a very potent cancer chemopreventive agent through regulation of diverse mechanisms. However, no data are available concerning the effects of xanthohumol on platelet activation. The aim of this paper was to examine the antiplatelet effect of xanthohumol in washed human platelets. In the present paper, xanthohumol exhibited more-potent activity in inhibiting platelet aggregation stimulated by collagen. Xanthohumol inhibited platelet activation accompanied by relative [Ca2+]imobilization, thromboxane A2formation, hydroxyl radical (OH●) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), and Akt phosphorylation. Neither SQ22536, an inhibitor of adenylate cyclase, nor ODQ, an inhibitor of guanylate cyclase, reversed the xanthohumol-mediated inhibitory effect on platelet aggregation. Furthermore, xanthohumol did not significantly increase nitrate formation in platelets. This study demonstrates for the first time that xanthohumol possesses potent antiplatelet activity which may initially inhibit the PI3-kinase/Akt, p38 MAPK, and PLCγ2-PKC cascades, followed by inhibition of the thromboxane A2formation, thereby leading to inhibition of [Ca2+]iand finally inhibition of platelet aggregation. Therefore, this novel role of xanthohumol may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases.


1987 ◽  
Author(s):  
K Harada ◽  
T Fujimori ◽  
M Kogushi ◽  
M Kogushi ◽  
I Yamatsu ◽  
...  

Our newly synthesized compound, 4-cyano-5,5-bis(methoxy-phenyl)-4-pentenoic acid (E-5510) has highly potent antiplatelet activity. In this paper, the effects of E-5510 on platelet functions in vitro and ex vivo in human and in various experimental animals are examined.E-5510 inhibited human platelet aggregation induced by collagen, arachidonate, ADP, PAF and epinephrine (IC50: 1.5, 0.7, 2.0, 1.6 and 1.1 uM, respectively). Thrombin-induced platelet aggregation, which was not inhibited by aspirin and U-53059 (lC50s: 100 uM), was also inhibited by this compound (IC50: 21uM). The IC50 of E-5510 in thrombin-induced ATP secretion fromhuman platelets was only 2 uM. Platelet adhesion to a collagen coated disk, whichwas measured by the method of Buchanan et al (Prost. Leuko. Med., 21, 157, 1986) was inhibited by E-5510 (IC50: 19.3 uM) butnot by aspirin and U-53059. In the PRP ofthe guinea pig, the beagle and the monkey, E-5510 inhibited collagen-induced platelet aggregation in vitro to the same degree as in human PRP(IC50: 1.2, 0.6 and 1.5 uM, respectively). After being administered orally to guinea pigs, E-5510 exhibited extremely potent ex vivo inhibitory effect in collagen-induced platelet aggregation with a very low ED50 of 0.05 mg/kg. In contrast, the ED50’s of ticlopidine, aspirin and U-53059 were 300 , 27.2 and 1.0 mg/kg, respectively. In beagles and monkeys E-5510 also showed ex vivo antiplatelet effects at 0.01 and 0.003 mg/kg, respectively. This effect continued for more than 8 hrs. and disappeared within 24 hrs. The antiplatelet effect in human PRP was highly correlated with that in PRP of experimental animals in which the ex vivo effects were confirmed at a very low dose. Thus, E-5510 will ensure to exert the antiplatelet effect after oral administration to human subjects.In summary, E-5510 is unique among the known antiplatelet agents since it has potent inhibitory effects on thrombin-induced platelet activation and platelet adhesion to collagen. It was also shown that this compound had an ex vivo antiplatelet effect at an extremely low ED50. Our results suggest that E-5510 will be a beneficial agent for antiplatelet therapy in humans.


2018 ◽  
Vol 19 (8) ◽  
pp. 2386 ◽  
Author(s):  
Chih-Wei Hsia ◽  
Ming-Ping Wu ◽  
Marappan Velusamy ◽  
Chih-Hsuan Hsia ◽  
Duen-Suey Chou ◽  
...  

Morin hydrate, a bioactive flavonoid, has been proven to prevent inflammation and apoptosis of cells. Flavonoids can reduce the risk of cardiovascular diseases, in which platelet activation plays a major role. This study investigated the effect of morin hydrate on platelet activation in vitro and in vivo. Morin hydrate markedly inhibited platelet aggregation stimulated by collagen in human platelets but not that stimulated by other agonists. In collagen-activated platelets, morin hydrate inhibited adenosine triphosphate (ATP) release; intracellular Ca2+ mobilization; P-selectin expression; and phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), and Akt. In mitogen-activated protein kinase (MAPK) activation, morin hydrate evidently diminished ERK2 or JNK1 activation, except for p38 MAPK. Additionally, morin hydrate markedly reduced the OH· signals in platelet suspensions but not in the cell-free system (Fenton reaction solution). Moreover, morin hydrate substantially increased the occlusion time of thrombotic platelet plug formation but had no effect on bleeding time in mice. In conclusion, morin hydrate crucially inhibits platelet activation through inhibition of the PLCγ2–PKC cascade and subsequent suppression of Akt and MAPK activation, thereby ultimately inhibiting platelet aggregation. Therefore, this paper suggests that morin hydrate constitutes a novel and potential natural therapeutic product for preventing or treating thromboembolic disorders.


2012 ◽  
Vol 123 (3) ◽  
pp. 147-159 ◽  
Author(s):  
Ting-Hsing Chao ◽  
Shih-Ya Tseng ◽  
Yi-Heng Li ◽  
Ping-Yen Liu ◽  
Chung-Lung Cho ◽  
...  

Cilostazol is an anti-platelet agent with vasodilatory activity that acts by increasing intracellular concentrations of cAMP. Recent reports have suggested that cilostazol may promote angiogenesis. In the present study, we have investigated the effect of cilostazol in promoting angiogenesis and vasculogenesis in a hindlimb ischaemia model and have also examined its potential mechanism of action in vitro and in vivo. We found that cilostazol treatment significantly increased colony formation by human early EPCs (endothelial progenitor cells) through a mechanism involving the activation of cAMP/PKA (protein kinase A), PI3K (phosphoinositide 3-kinase)/Akt/eNOS (endothelial NO synthase) and ERK (extracellular-signal-regulated kinase)/p38 MAPK (mitogen-activated protein kinase) signalling pathways. Cilostazol also enhanced proliferation, chemotaxis, NO production and vascular tube formation in HUVECs (human umbilical vein endothelial cells) through activation of multiple signalling pathways downstream of PI3K/Akt/eNOS. Cilostazol up-regulated VEGF (vascular endothelial growth factor)-A165 expression and secretion of VEGF-A in HUVECs through activation of the PI3K/Akt/eNOS pathway. In a mouse hindlimb ischaemia model, recovery of blood flow ratio (ipsilateral/contralateral) 14 days after surgery was significantly improved in cilostazol-treated mice (10 mg/kg of body weight) compared with vehicle-treated controls (0.63±0.07 and 0.43±0.05 respectively, P<0.05). Circulating CD34+ cells were also increased in cilostazol-treated mice (3614±670 compared with 2151±608 cells/ml, P<0.05). Expression of VEGF and phosphorylation of PI3K/Akt/eNOS and ERK/p38 MAPK in ischaemic muscles were significantly enhanced by cilostazol. Our data suggest that cilostazol produces a vasculo-angiogenic effect by up-regulating a broad signalling network that includes the ERK/p38 MAPK, VEGF-A165, PI3K/Akt/eNOS and cAMP/PKA pathways.


2007 ◽  
Vol 403 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Sandrine Pacquelet ◽  
Jennifer L. Johnson ◽  
Beverly A. Ellis ◽  
Agnieszka A. Brzezinska ◽  
William S. Lane ◽  
...  

Exposure of neutrophils to LPS (lipopolysaccharide) triggers their oxidative response. However, the relationship between the signalling downstream of TLR4 (Toll-like receptor 4) after LPS stimulation and the activation of the oxidase remains elusive. Phosphorylation of the cytosolic factor p47phox is essential for activation of the NADPH oxidase. In the present study, we examined the hypothesis that IRAK-4 (interleukin-1 receptor-associated kinase-4), the main regulatory kinase downstream of TLR4 activation, regulates the NADPH oxidase through phosphorylation of p47phox. We show that p47phox is a substrate for IRAK-4. Unlike PKC (protein kinase C), IRAK-4 phosphorylates p47phox not only at serine residues, but also at threonine residues. Target residues were identified by tandem MS, revealing a novel threonine-rich regulatory domain. We also show that p47phox is phosphorylated in granulocytes in response to LPS stimulation. LPS-dependent phosphorylation of p47phox was enhanced by the inhibition of p38 MAPK (mitogen-activated protein kinase), confirming that the kinase operates upstream of p38 MAPK. IRAK-4-phosphorylated p47phox activated the NADPH oxidase in a cell-free system, and IRAK-4 overexpression increased NADPH oxidase activity in response to LPS. We have shown that endogenous IRAK-4 interacts with p47phox and they co-localize at the plasma membrane after LPS stimulation, using immunoprecipitation assays and immunofluorescence microscopy respectively. IRAK-4 was activated in neutrophils in response to LPS stimulation. We found that Thr133, Ser288 and Thr356, targets for IRAK-4 phosphorylation in vitro, are also phosphorylated in endogenous p47phox after LPS stimulation. We conclude that IRAK-4 phosphorylates p47phox and regulates NADPH oxidase activation after LPS stimulation.


1993 ◽  
Vol 13 (9) ◽  
pp. 5659-5669 ◽  
Author(s):  
M Tyers ◽  
B Futcher

In the yeast Saccharomyces cerevisiae, the Cdc28 protein kinase controls commitment to cell division at Start, but no biologically relevant G1-phase substrates have been identified. We have studied the kinase complexes formed between Cdc28 and each of the G1 cyclins Cln1, Cln2, and Cln3. Each complex has a specific array of coprecipitated in vitro substrates. We identify one of these as Far1, a protein required for pheromone-induced arrest at Start. Treatment with alpha-factor induces a preferential association and/or phosphorylation of Far1 by the Cln1, Cln2, and Cln3 kinase complexes. This induced interaction depends upon the Fus3 protein kinase, a mitogen-activated protein kinase homolog that functions near the bottom of the alpha-factor signal transduction pathway. Thus, we trace a path through which a mitogen-activated protein kinase regulates a Cdc2 kinase.


Sign in / Sign up

Export Citation Format

Share Document