scholarly journals Magnetoliposomes Incorporated in Peptide-Based Hydrogels: Towards Development of Magnetolipogels

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1702 ◽  
Author(s):  
Sérgio R. S. Veloso ◽  
Raquel G. D. Andrade ◽  
Beatriz C. Ribeiro ◽  
André V. F. Fernandes ◽  
A. Rita O. Rodrigues ◽  
...  

A major problem with magnetogels is the encapsulation of hydrophobic drugs. Magnetoliposomes not only provide these domains but also improve drug stability and avert the aggregation of the magnetic nanoparticles. In this work, two magnetoliposome architectures, solid and aqueous, were combined with supramolecular peptide-based hydrogels, which are of biomedical interest owing to their biocompatibility, easy tunability, and wide array of applications. This proof-of-concept was carried out through combination of magnetoliposomes (loaded with the model drug curcumin and the lipid probe Nile Red) with the hydrogels prior to pH triggered gelation, and fluorescence spectroscopy was used to assess the dynamics of the encapsulated molecules. These systems allow for the encapsulation of a wider array of drugs. Further, the local environment of the encapsulated molecules after gelation is unaffected by the used magnetoliposome architecture. This system design is promising for future developments on drug delivery as it provides a means to independently modify the components and adapt and optimize the design according to the required conditions.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1832 ◽  
Author(s):  
Ylenia Jabalera ◽  
Francesca Oltolina ◽  
Ana Peigneux ◽  
Alberto Sola-Leyva ◽  
Maria P. Carrasco-Jiménez ◽  
...  

The design of novel nanomaterials that can be used as multifunctional platforms allowing the combination of therapies is gaining increased interest. Moreover, if this nanomaterial is intended for a targeted drug delivery, the use of several guidance methods to increase guidance efficiency is also crucial. Magnetic nanoparticles (MNPs) allow this combination of therapies and guidance strategies. In fact, MNPs can be used simultaneously as drug nanocarriers and magnetic hyperthermia agents and, moreover, they can be guided toward the target by an external magnetic field and by their functionalization with a specific probe. However, it is difficult to find a system based on MNPs that exhibits optimal conditions as a drug nanocarrier and as a magnetic hyperthermia agent. In this work, a novel nanoformulation is proposed to be used as a multifunctional platform that also allows dual complementary guidance. This nanoformulation is based on mixtures of inorganic magnetic nanoparticles (M) that have been shown to be optimal hyperthermia agents, and biomimetic magnetic nanoparticles (BM), that have been shown to be highly efficient drug nanocarriers. The presence of the magnetosome protein MamC at the surface of BM confers novel surface properties that allow for the efficient and stable functionalization of these nanoparticles without the need of further coating, with the release of the relevant molecule being pH-dependent, improved by magnetic hyperthermia. The BM are functionalized with Doxorubicin (DOXO) as a model drug and with an antibody that allows for dual guidance based on a magnetic field and on an antibody. The present study represents a proof of concept to optimize the nanoformulation composition in order to provide the best performance in terms of the magnetic hyperthermia agent and drug nanocarrier.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Gregory J. Zilinskas ◽  
Abdolrasoul Soleimani ◽  
Elizabeth R. Gillies

Micelles formed from amphiphilic copolymers are promising materials for the delivery of drug molecules, potentially leading to enhanced biological properties and efficacy. In this work, new poly(ester amide)-poly(ethylene oxide) (PEA-PEO) graft copolymers were synthesized and their assembly into micelles in aqueous solution was investigated. It was possible to tune the sizes of the micelles by varying the PEO content of the polymers and the method of micelle preparation. Under optimized conditions, it was possible to obtain micelles with diameters less than 100 nm as measured by dynamic light scattering and transmission electron microscopy. These micelles were demonstrated to encapsulate and release a model drug, Nile Red, and were nontoxic to HeLa cells as measured by an MTT assay. Overall, the properties of these micelles suggest that they are promising new materials for drug delivery systems.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 161
Author(s):  
Brandon Andrade-Gagnon ◽  
Marilyne Bélanger-Bouliga ◽  
Phuong Trang Nguyen ◽  
Thi Hong Diep Nguyen ◽  
Steve Bourgault ◽  
...  

Polymeric nanomaterials that degrade in acidic environments have gained considerable attention in nanomedicine for intracellular drug delivery and cancer therapy. Among various acid-degradable linkages, spirocyclic acetals have rarely been used to fabricate such vehicles. In addition to acid sensitivity, they benefit from conformational rigidity that is otherwise not attainable by their non-spirocyclic analogs. Herein, amphiphilic spirocyclic polyacetals are synthesized by Cu-catalyzed alkyne–azide “click” polymerization. Unlike conventional block copolymers, which often form core–shell structures, these polymers self-assemble to form core amphiphilic assemblies capable of encapsulating Nile red as a hydrophobic model drug. In vitro experiments show that while release from these materials can occur at neutral pH with preservation of their integrity, acidic pH accelerates efficient cargo release and leads to the complete degradation of assemblies. Moreover, cellular assays reveal that these materials are fully cytocompatible, interact with the plasma membrane, and can be internalized by cells, rendering them as potential candidates for cancer therapy and/or drug delivery.


RSC Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 6517-6525
Author(s):  
Fatemeh Mohajer ◽  
Ghodsi Mohammadi Ziarani ◽  
Alireza Badiei

Magnetic nanoparticles have been studied for scientific and technological applications such as magnetic storage media, contrast agents for magnetic resonance imaging, biolabelling, separation of biomolecules, and magnetic-targeted drug delivery.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 801
Author(s):  
Abdelrahman Mohamed ◽  
Viktor Korzhikov-Vlakh ◽  
Nan Zhang ◽  
André Said ◽  
Iuliia Pilipenko ◽  
...  

A plethora of micro- and nanoparticle types are currently investigated for advanced ocular treatment due to improved drug retention times, higher bioavailability and better biocompatibility. Yet, comparative studies of both physicochemical and toxicological performance of these novel drug delivery systems are still rare. Herein, poly(L-lactic acid)- and poly(ε-caprolactone)-based micro- and nanoparticles were loaded with prednisolone as a model drug. The physicochemical properties of the particles were varied with respect to their hydrophilicity and size as well as their charge and the effect on prednisolone release was evaluated. The particle biocompatibility was assessed by a two-tier testing strategy, combining the EpiOcularTM eye irritation test and bovine corneal opacity and permeability assay. The biodegradable polyelectrolyte corona on the particles’ surface determined the surface charge and the release rate, enabling prednisolone release for at least 30 days. Thereby, the prednisolone release process was mainly governed by molecular diffusion. Finally, the developed particle formulations were found to be nontoxic in the tested range of concentrations.


2011 ◽  
Vol 7 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Xin Su ◽  
Xin Zhan ◽  
Fang Tang ◽  
Jingyuan Yao ◽  
Ji Wu

Sign in / Sign up

Export Citation Format

Share Document