Drug delivery investigations of quaternised poly(propylene imine) dendrimer using nimesulide as a model drug

2014 ◽  
Vol 114 ◽  
pp. 121-129 ◽  
Author(s):  
E. Murugan ◽  
D.P. Geetha Rani ◽  
V. Yogaraj
Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 801
Author(s):  
Abdelrahman Mohamed ◽  
Viktor Korzhikov-Vlakh ◽  
Nan Zhang ◽  
André Said ◽  
Iuliia Pilipenko ◽  
...  

A plethora of micro- and nanoparticle types are currently investigated for advanced ocular treatment due to improved drug retention times, higher bioavailability and better biocompatibility. Yet, comparative studies of both physicochemical and toxicological performance of these novel drug delivery systems are still rare. Herein, poly(L-lactic acid)- and poly(ε-caprolactone)-based micro- and nanoparticles were loaded with prednisolone as a model drug. The physicochemical properties of the particles were varied with respect to their hydrophilicity and size as well as their charge and the effect on prednisolone release was evaluated. The particle biocompatibility was assessed by a two-tier testing strategy, combining the EpiOcularTM eye irritation test and bovine corneal opacity and permeability assay. The biodegradable polyelectrolyte corona on the particles’ surface determined the surface charge and the release rate, enabling prednisolone release for at least 30 days. Thereby, the prednisolone release process was mainly governed by molecular diffusion. Finally, the developed particle formulations were found to be nontoxic in the tested range of concentrations.


2021 ◽  
Author(s):  
Shishuai Dang ◽  
Zhengwei Huang ◽  
Ying Huang ◽  
Xin Pan ◽  
Chuanbin Wu

<p>Lipid-based nanoparticles (LBNs) are a new type of nanoparticulate drug delivery system, which have been gradually shown broad prospects in pulmonary drug delivery systems. However, the main disadvantage of these LBNs for inhalable drugs with limited lipophilicity is the low encapsulation capacity. Herein, this study anticipates establishing a technology platform to improve the loading capacity of low lipophilicity drugs in LBNs, for the therapy of lung diseases. A proof-of-concept was carried out using Beclomethasone dipropionate (BDP) as a model drug. BDP was conjugated with stearic acid (SA), a kind of the lipid matrix for LBN. The conjugate was characterized and the interactions between the conjugate and SA were investigated by molecular dynamics simulation. It is expected that the drug loading capacity of weak-lipophilic drugs in LBN can be increased by establishing the technology platform, and the application of LBNs in pulmonary delivery can be broadened.</p>


2016 ◽  
Vol 23 (4) ◽  
pp. 375-380
Author(s):  
P. Manohar Reddy ◽  
Ravy Lakshmi ◽  
Febin Prabhu Dass ◽  
Swamiappan Sasikumar

AbstractSodium calcium silicate (Na2CaSiO4) is a bioactive silicate with Na2O, CaO and SiO2 as its basic components, which is similar to that of the composition of bioactive glasses. In the present study, pure sodium calcium silicate was synthesized by rapid combustion technique, and the synthesized sample was characterized by powder X-ray diffraction to check the phase purity. The scaffolds were prepared by varying the ratio of sodium calcium silicate and polyvinyl alcohol, and the apatite-formation ability of the scaffolds was examined by soaking them in a simulated body fluid. The results revealed the formation of hydroxyapatite on the surface of the scaffold after 5 days, which is found to be rapid when compared with the bioactivity of the calcium silicates and calcium magnesium silicates. The scaffolds were also loaded with ciprofloxacin as a model drug and analyzed for its drug release profile using UV spectrophotometer. The release profile did not vary with the change in bioceramic-to-biopolymer ratio, and 60% of the drug was released in 10 days, which is within the appreciable range for a targeted drug delivery system. Moreover, the experimental and simulated values of the release kinetics were compared by applying the existing mathematical model.


2011 ◽  
Vol 6 (3-4) ◽  
pp. 256-264 ◽  
Author(s):  
K. V. Purtov ◽  
A. I. Petunin ◽  
A. P. Puzyr ◽  
A. E. Burov ◽  
V. S. Bondar

Author(s):  
Sai S. Sagiri ◽  
Suraj K. Nayak ◽  
S. Lakshmi ◽  
Kunal Pal

In recent years, the use of biopolymeric nanoparticles as vehicles for drug delivery has increased exponentially. In the present study, chitosan and gelatin nanoparticles were prepared by ionic gelation and desolvation methods, respectively. Salicylic acid was used as the model drug. The nanoparticles were characterized using SEM, XRD analysis and FTIR spectrophotometric studies. In vitro drug release experiments were carried out to understand the mechanism of drug release. SEM micrographs showed the formation of spherical nanoparticles. XRD studies indicated a higher crystalline nature of the chitosan nanoparticles as compared to the gelatin nanoparticles. FTIR studies indicated the presence of salicylic acid within the drug- loaded nanoparticles. Drug release studies indicated that the developed nanoparticles may be used as carriers for various bioactive agents.


2019 ◽  
Vol 104 (6) ◽  
pp. e4.2-e4
Author(s):  
G Salis ◽  
N Medlicott ◽  
D Reith

BackgroundGentamicin is commonly used in the NICU setting and is often administered via long lines, which increases variability in the rate of administration. We aimed to model drug delivery pharmacokinetic parameters for intravenous gentamicin administered via umbilical venous catheters (UVCs).MethodsData was modelled from infusion simulations of gentamicin delivery using UVCs with a background flow rate of 0.5 ml/h.1 Different combinations of dose (2 mg, 5 mg) were given by bolus injection over 3–5 minutes, followed by a normal saline flush (1 ml, 2 ml). Gentamicin levels were measured at 5 minute intervals over an hour via high pressure liquid chromatography.Phoenix Certara (version 8.1) was used for modelling. An extravascular model with clearance removed was used to predict parameters: absorption constant (Ka), time lag (Tlag), and bioavailability (F). F was used to enable an estimate of the variability in dose administered. Different error models were tested to ascertain which best described the data.ResultsAn extravascular one compartment model with first order absorption and additive error best described the data. Estimates for the model with a 2 mg dose and 1 ml flush were Ka 0.34L/min, Tlag 1.28min, F 0.97, standard deviation (stdev) 0.14. For 2 mg, 2 ml flush, estimates were Ka 0.86L/min, Tlag 3.01min, F 0.87, stdev 0.01. For 5 mg, 1 ml flush, estimates were Ka 0.48L/min, Tlag 3.13min, F 1.03, stdev 0.12. For 5 mg, 2 ml flush, estimates were Ka 0.83L/min, Tlag 3.29min, F 1.09, stdev 0.02. For each model epsshrinkage and nshrinkage for Tlag and F were low, however nshrinkage for ka was 0.9999.ConclusionThis is the first known modelling of gentamicin delivery kinetics. The studies all had high nshrinkage for Ka, therefore the individual estimates of ka may be unreliable. Further studies with a higher number of replicates would provide more favourable data for estimating Ka.ReferenceLala AC ( 2016). Variability in neonatal gentamicin administration influencing drug delivery kinetics (Thesis, Master of Medical Science). University of Otago.Disclosure(s)No conflict of interest declared. Funding for research via the Freemasons Society of New Zealand.


2019 ◽  
Vol 824 ◽  
pp. 176-181
Author(s):  
Walaiporn Prissanaroon-Ouajai ◽  
Natthika Koedsombat ◽  
Nuttapol Subbua

Polyacrylamide/polypyrrole (PAM/PPy) hydrogel was developed for the application in controlled drug delivery. PAM/PPy hydrogel was synthesized via free-radical polymerization of acrylamide using ammonium persulfate (APS) as initiator in the dispersion of PPy nanoparticle. N,N’-methylenebisacrylamide (MBA) and N,N,N’,N’-tetra-methylenediamine (TEMED) were utilized as cross-linker and accelerator, respectively. Salicylic acid (SA) was selected as a model drug in this work. The effect of PPy contents on SA-loading and releasing performances was investigated. The more PPy content was incorporated, the greater SA-loading and releasing were found. This is attributed to the increasing pore size of the PAM hydrogel when PPy nanoparticles were incorporated. Drug releasing performance from the SA-loaded PAM/PPy hydrogel were controllable under the applied potential of 1.0 volt. The research exhibits the potential of using conductive polymer hydrogel to control the drug release rate at an optimal desired level.


Sign in / Sign up

Export Citation Format

Share Document