scholarly journals Preparation and Applications of Organo-Silica Hybrid Mesoporous Silica Nanoparticles for the Co-Delivery of Drugs and Nucleic Acids

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2466
Author(s):  
Iris Pontón ◽  
Andrea Martí del Rio ◽  
Marta Gómez Gómez ◽  
David Sánchez-García

Combination therapies rely on the administration of more than one drug, with independent mechanisms of action, aiming to enhance the efficiency of the treatment. For an optimal performance, the implementation of such therapies requires the delivery of the correct combination of drugs to a specific cellular target. In this context, the use of nanoparticles (NP) as platforms for the co-delivery of multiple drugs is considered a highly promising strategy. In particular, mesoporous silica nanoparticles (MSN) have emerged as versatile building blocks to devise complex drug delivery systems (DDS). This review describes the design, synthesis, and application of MSNs to the delivery of multiple drugs including nucleic acids for combination therapies.

1970 ◽  
Vol 8 (2) ◽  
pp. 50-57
Author(s):  
Jemal Dilebo

Mesoporous silica nanoparticles (MSN) have been explored for the delivery of small molecule drugs, antigens, and nucleic acids because of their large surface area, pore volume, amenability of their surface for functionalization, stable mesoporous structure, and biocompatibility.  Biomoecules loading capacitites,  release and target cell accumulation efficiencies have been improved for both antigen and nucleic acid delivery by the synthesis of large-pore MSN, dendritic MSN, hollow-core MSN, and multifunctional MSN. This article overview the major advances in the use of MSN for delivery of antigens and therapeutic nucleic acids such as DNA, siRNA, and miRNA aimed for treatment of various diseases.       


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 432 ◽  
Author(s):  
Rafael R. Castillo ◽  
Daniel Lozano ◽  
María Vallet-Regí

The enormous versatility of mesoporous silica nanoparticles permits the creation of a large number of nanotherapeutic systems for the treatment of cancer and many other pathologies. In addition to the controlled release of small drugs, these materials allow a broad number of molecules of a very different nature and sizes. In this review, we focus on biogenic species with therapeutic abilities (proteins, peptides, nucleic acids, and glycans), as well as how nanotechnology, in particular silica-based materials, can help in establishing new and more efficient routes for their administration. Indeed, since the applicability of those combinations of mesoporous silica with bio(macro)molecules goes beyond cancer treatment, we address a classification based on the type of therapeutic action. Likewise, as illustrative content, we highlight the most typical issues and problems found in the preparation of those hybrid nanotherapeutic materials.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244
Author(s):  
Paz de la Torre ◽  
Juan L. Paris ◽  
Miguel Fernández-de la Torre ◽  
María Vallet-Regí ◽  
Ana I. Flores

Combination therapies constitute a powerful tool for cancer treatment. By combining drugs with different mechanisms of action, the limitations of each individual agent can be overcome, while increasing therapeutic benefit. Here, we propose employing tumor-migrating decidua-derived mesenchymal stromal cells as therapeutic agents combining antiangiogenic therapy and chemotherapy. First, a plasmid encoding the antiangiogenic protein endostatin was transfected into these cells by nucleofection, confirming its expression by ELISA and its biological effect in an ex ovo chick embryo model. Second, doxorubicin-loaded mesoporous silica nanoparticles were introduced into the cells, which would act as vehicles for the drug being released. The effect of the drug was evaluated in a coculture in vitro model with mammary cancer cells. Third, the combination of endostatin transfection and doxorubicin-nanoparticle loading was carried out with the decidua mesenchymal stromal cells. This final cell platform was shown to retain its tumor-migration capacity in vitro, and the combined in vitro therapeutic efficacy was confirmed through a 3D spheroid coculture model using both cancer and endothelial cells. The results presented here show great potential for the development of combination therapies based on genetically-engineered cells that can simultaneously act as cellular vehicles for drug-loaded nanoparticles.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 219
Author(s):  
Candace M. Day ◽  
Martin J. Sweetman ◽  
Shane M. Hickey ◽  
Yunmei Song ◽  
Yongjun Liu ◽  
...  

Conventional chemotherapies used for breast cancer (BC) treatment are non-selective, attacking both healthy and cancerous cells. Therefore, new technologies that enhance drug efficacy and ameliorate the off-target toxic effects exhibited by currently used anticancer drugs are urgently needed. Here we report the design and synthesis of novel mesoporous silica nanoparticles (MSNs) equipped with the hormonal drug tamoxifen (TAM) to facilitate guidance towards estrogen receptors (ERs) which are upregulated in breast tumours. TAM is linked to the MSNs using a poly-ʟ-histidine (PLH) polymer as a pH-sensitive gatekeeper, to ensure efficient delivery of encapsulated materials within the pores. XRD, HR-TEM, DLS, SEM, FT-IR and BET techniques were used to confirm the successful fabrication of MSNs. The MSNs have a high surface area (>1000 m2/g); and a mean particle size of 150 nm, which is an appropriate size to allow the penetration of premature blood vessels surrounding breast tumours. Successful surface functionalization was supported by FT-IR, XPS and TGA techniques, with a grafting ratio of approximately 29%. The outcomes of this preliminary work could be used as practical building blocks towards future formulations.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1219 ◽  
Author(s):  
Gabriel Martínez-Edo ◽  
Maria C. Llinàs ◽  
Salvador Borrós ◽  
David Sánchez-García

A straightforward methodology for the synthesis of isothiocyanate-functionalized mesoporous silica nanoparticles (MSNs) by exposure of aminated MSNs to 1,1′-thiocarbonyldi-2(1H)-pyridone is reported. These nanoparticles are chemically stable, water tolerant, and readily react with primary amines without the formation of any by-product. This feature allows the easy modification of the surface of the nanoparticles for tuning their physical properties and the introduction of gatekeepers on the pore outlets. As a proof-of-concept, amino-isothiocyanate-functionalized MSNs have been used for the design of a nanocontainer able to release the drug Ataluren. The release profile of the drug can be easily fine-tuned with the careful choice of the capping amine.


2017 ◽  
Vol 5 (3) ◽  
pp. 353-377 ◽  
Author(s):  
Rafael R. Castillo ◽  
Alejandro Baeza ◽  
María Vallet-Regí

The control of many biological roles exerted by nucleic acids turned them into a powerful tool for the development of advanced biotechnological materials when in combination with mesoporous silica nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document