scholarly journals Perovskite Solar Cells: Potentials, Challenges, and Opportunities

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Muhammad Imran Ahmed ◽  
Amir Habib ◽  
Syed Saad Javaid

Heralded as a major scientific breakthrough of 2013, organic/inorganic lead halide perovskite solar cells have ushered in a new era of renewed efforts at increasing the efficiency and lowering the cost of solar energy. As a potential game changer in the mix of technologies for alternate energy, it has emerged from a modest beginning in 2012 to efficiencies being claimed at 20.1% in a span of just two years. This remarkable progress, encouraging at one end, also points to the possibility that the potential may still be far from being fully realized. With greater insight into the photophysics involved and optimization of materials and methods, this technology stands to match or even exceed the efficiencies for single crystal silicon solar cells. With thin film solution processability, applicability to flexible substrates, and being free of liquid electrolyte, this technology combines the benefits of Dye Sensitized Solar Cells (DSSCs), Organic Photovoltaics (OPVs), and thin film solar cells. In this review we present a brief historic perspective to this development, take a cognizance of the current state of the art, and highlight challenges and the opportunities.

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2512
Author(s):  
Daming Zheng ◽  
Changheng Tong ◽  
Tao Zhu ◽  
Yaoguang Rong ◽  
Thierry Pauporté

During the past decade, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has risen rapidly, and it now approaches the record for single crystal silicon solar cells. However, these devices still suffer from a problem of stability. To improve PSC stability, two approaches have been notably developed: the use of additives and/or post-treatments that can strengthen perovskite structures and the use of a nontypical architecture where three mesoporous layers, including a porous carbon backcontact without hole transporting layer, are employed. This paper focuses on 5-ammonium valeric acid iodide (5-AVAI or AVA) as an additive in methylammonium lead iodide (MAPI). By combining scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence (TRPL), current–voltage measurements, ideality factor determination, and in-depth electrical impedance spectroscopy (EIS) investigations on various layers stacks structures, we discriminated the effects of a mesoscopic scaffold and an AVA additive. The AVA additive was found to decrease the bulk defects in perovskite (PVK) and boost the PVK resistance to moisture. The triple mesoporous structure was detrimental for the defects, but it improved the stability against humidity. On standard architecture, the PCE is 16.9% with the AVA additive instead of 18.1% for the control. A high stability of TiO2/ZrO2/carbon/perovskite cells was found due to both AVA and the protection by the all-inorganic scaffold. These cells achieved a PCE of 14.4% in the present work.


2021 ◽  
Vol 1165 ◽  
pp. 113-130
Author(s):  
Romyani Goswami

In photovoltaic system the major challenge is the cost reduction of the solar cell module to compete with those of conventional energy sources. Evolution of solar photovoltaic comprises of several generations through the last sixty years. The first generation solar cells were based on single crystal silicon and bulk polycrystalline Si wafers. The single crystal silicon solar cell has high material cost and the fabrication also requires very high energy. The second generation solar cells were based on thin film fabrication technology. Due to low temperature manufacturing process and less material requirement, remarkable cost reduction was achieved in these solar cells. Among all the thin film technologies amorphous silicon thin film solar cell is in most advanced stage of development and is commercially available. However, an inherent problem of light induced degradation in amorphous silicon hinders the higher efficiency in this kind of cell. The third generation silicon solar cells are based on nano-crystalline and nano-porous materials. Hydrogenated nanocrystalline silicon (nc-Si:H) is becoming a promising material as an absorber layer of solar cell due to its high stability with high Voc. It is also suggested that the cause of high stability and less degradation of certain nc-Si:H films may be due to the improvement of medium range order (MRO) of the films. During the last ten years, organic, polymer, dye sensitized and perovskites materials are also attract much attention of the photovoltaic researchers as the low budget next generation PV material worldwide. Although most important challenge for those organic solar cells in practical applications is the stability issue. In this work nc-Si:H films are successfully deposited at a high deposition rate using a high pressure and a high power by Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF PECVD) technique. The transmission electron microscopy (TEM) studies show the formations of distinct nano-sized grains in the amorphous tissue with sharp crystalline orientations. Light induced degradation of photoconductivity of nc-Si:H materials have been studied. Single junction solar cells and solar module were successfully fabricated using nanocrystalline silicon as absorber layer. The optimum cell is 7.1 % efficient initially. Improvement in efficiency can be achieved by optimizing the doped layer/interface and using Ag back contact.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 295
Author(s):  
Tianzhao Dai ◽  
Qiaojun Cao ◽  
Lifeng Yang ◽  
Mahmoud Aldamasy ◽  
Meng Li ◽  
...  

Perovskite solar cells (PSCs) have received a great deal of attention in the science and technology field due to their outstanding power conversion efficiency (PCE), which increased rapidly from 3.9% to 25.5% in less than a decade, comparable to single crystal silicon solar cells. In the past ten years, much progress has been made, e.g. impressive ideas and advanced technologies have been proposed to enlarge PSC efficiency and stability. However, this outstanding progress has always been referred to as small-area (<0.1 cm2) PSCs. Little attention has been paid to the preparation processes and their micro-mechanisms for large-area (>1 cm2) PSCs. Meanwhile, scaling up is an inevitable way for large-scale application of PSCs. Therefore, we firstly summarize the current achievements for high efficiency and stability large-area perovskite solar cells, including precursor composition, deposition, growth control, interface engineering, packaging technology, etc. Then we include a brief discussion and outlook for the future development of large-area PSCs in commercialization.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 112
Author(s):  
Helen Hejin Park

Although power conversion efficiencies of organic-inorganic lead halide perovskite solar cells (PSCs) are approaching those of single-crystal silicon solar cells, the working device stability due to internal and external factors, such as light, temperature, and moisture, is still a key issue to address. The current world-record efficiency of PSCs is based on organic hole transport materials, which are usually susceptible to degradation from heat and diffusion of dopants. A simple solution would be to replace the generally used organic hole transport layers (HTLs) with a more stable inorganic material. This review article summarizes recent contributions of inorganic hole transport materials to PSC development, focusing on aspects of device performance and long-term stability. Future research directions of inorganic HTLs in the progress of PSC research and challenges still remaining will also be discussed.


2019 ◽  
Vol 293 ◽  
pp. 73-81
Author(s):  
Magdalena M. Szindler

In this paper, the possibility of replacing liquid electrolyte in a dye sensitized solar cells with a thin film of conductive polymer material was investigated. Liquid electrolyte in the construction of dye sensitized solar cells leaks and evaporates and leads to corrosion of the electrode, which lowers the conversion efficiency of solar radiation to electricity. The research focuses on the appropriate doping of the PVDF-HFP polymer by potassium iodide to improve its electrical conductivity and the development of thin film deposition technology for use in solar cells. Changes in PVDF-HFP surface morphology were researched through increasing of the potassium iodide content measured by scanning electron microscope. The increased content of potassium iodide also led to increased electrical conductivity measured by the Keithley meter. In order to test the suitability of developed materials for application in the construction of photovoltaic cells, a series of dye-sensitized solar cells ITO/TiO2/dye/active layer/Al were prepared. The active layer is made from pure PVDF-HFP and doped with potassium iodide. As a reference solar cell, a standard dye sensitized solar cell with a liquid electrolyte and a counter electrode was also made. Keywords PVDF-HFP; Polyelectrolyte; Dye-sensitized solar cells


Author(s):  
L. M. Peter

The opportunities for photovoltaic (PV) solar energy conversion are reviewed in the context of projected world energy demands for the twenty-first century. Conventional single-crystal silicon solar cells are facing increasingly strong competition from thin-film solar cells based primarily on polycrystalline absorber materials, such as cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS). However, if PVs are to make a significant contribution to satisfy global energy requirements, issues of sustainability and cost will need to be addressed with increased urgency. There is a clear need to expand the range of materials and processes that is available for thin-film solar cell manufacture, placing particular emphasis on low-energy processing and sustainable non-toxic raw materials. The potential of new materials is exemplified by copper zinc tin sulphide, which is emerging as a viable alternative to the more toxic CdTe and the more expensive CIGS absorber materials.


Author(s):  
K. Ramachandran ◽  
C. Jeganathan ◽  
R. Prabhakaran ◽  
M. Wakisaka ◽  
G. Paruthimal Kalaignan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document