scholarly journals Multifunctional GaFeO3 Obtained via Mechanochemical Activation Followed by Calcination of Equimolar Nano-System Ga2O3–Fe2O3

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 57
Author(s):  
Lucian Diamandescu ◽  
Felicia Tolea ◽  
Marcel Feder ◽  
Florin Vasiliu ◽  
Ionel Mercioniu ◽  
...  

The equimolar oxide mixture β-Ga2O3—α-Fe2O3 was subjected to high-energy ball milling (HEBM) with the aim to obtain the nanoscaled GaFeO3 ortho-ferrite. X-ray diffraction, 57Fe Mössbauer spectroscopy, and transmission electron microscopy were used to evidence the phase structure and evolution of the equimolar nano-system β-Ga2O3—α-Fe2O3 under mechanochemical activation, either as-prepared or followed by subsequent calcination. The mechanical activation was performed for 2 h to 12 h in normal atmosphere. After 12 h of HEBM, only nanoscaled (~20 nm) gallium-doped α-Fe2O3 was obtained. The GaFeO3 structure was obtained as single phase, merely after calcination at 950 °C for a couple of hours, of the sample being subjected to HEBM for 12 h. This temperature is 450 °C lower than used in the conventional solid phase reaction to obtain gallium orthoferrite. The optical and magnetic properties of representative nanoscaled samples, revealing their multifunctional character, were presented.

2014 ◽  
Vol 215 ◽  
pp. 470-473 ◽  
Author(s):  
Tamara V. Drokina ◽  
German A. Petrakovskii ◽  
Dmitrii A. Velikanov ◽  
Maksim S. Molokeev

In this paper we are reported about a peculiarity of the crystal structure and the magnetic state of TmFeTi2O7. The compound TmFeTi2O7 has been synthesizedusing the solid-phase reaction method. Using X-ray diffraction method the disorder in the distribution of the iron ions over five nonequivalent crystal sites was observed, also the populations of the iron atoms positions were determined. We show that below Tf = 6 K the magnetization of TmFeTi2O7 depends on the magnetic history of the sample. There are indications for spin glass state. This results allow us to assume the state of spin glass is realized below freezing temperature Tf = 6 K in TmFeTi2O7.


2013 ◽  
Vol 750-752 ◽  
pp. 506-511
Author(s):  
Yuan Yuan Li ◽  
Gui Xia Dong ◽  
Bi Yan Zhu ◽  
Qiu Xiang Liu ◽  
Di Wu

As a research object, the samples with various Ba/Ti ratios (Ba/Ti=0.95~1.05) were synthesized by solid phase reaction method. Effect of sintering temperatures and Ba/Ti ratio on dielectric properties and crystal structure of BaTiO3ceramic were investigated. Crystal structure and crystal phase composition were investigated by scanning electron microscopy and X-ray diffraction. The dielectric properties were studied by Agilent 4294A at 1 kHz. The results show that the BaTiO3ceramic has high permittivity and dielectric loss at 1340°C. The permittivity of BaTiO3ceramic with Ba/Ti=0.95 change small as the sintering temperatures vary at 1320°C. With the increasing of Ba/Ti ratio, the Curie temperature first increases and then decreases as the sample sintering at 1320°C. When Ba/Ti=1, the Curie temperature increase with the sintering temperature increasing.


2018 ◽  
Vol 790 ◽  
pp. 9-14
Author(s):  
Shin Ichi Furusawa ◽  
Yohei Minami

MAlSi3O8 (M = Li, Na, K) was synthesized by solid-phase reaction at 1000 °C using M2CO3 (M = Li, Na, K), Al2O3, and SiO2 as the starting materials, and its ionic conduction was studied in the temperature range 475–800 K. It was confirmed from powder X-ray diffraction profiles that the crystalline phases of the prepared MAlSi3O8 were the same as those of orthoclase. Moreover, the ionic conductivity of NaAlSi3O8 was about 10 times higher than that of LiAlSi3O8 and KAlSi3O8. The activation energies for ionic conduction were estimated to be in the range of 0.70–0.77 eV, with NaAlSi3O8 exhibiting the lowest activation energy. The result suggests that the magnitude of the activation energy cannot be determined only from the ionic radius.


1994 ◽  
Vol 339 ◽  
Author(s):  
A. Bachli ◽  
J. S. Chen ◽  
R. P. Ruiz ◽  
M-A. Nicolet

ABSTRACTThe thermally induced solid-phase reaction of 135 nm thick sputter-deposited W films with polycrystalline CVD-grown diamond substrates is investigated. The samples are annealed in vacuum (5×10/-7 torr) at temperatures between 700 °C and 1100 °C for 1 hour and examined by 2 MeV 4He++ backscattering spectrometry, x-ray diffraction, and scanning electron microscopy.The as-deposited W films contain roughly 5 at.% oxygen. After annealing the samples at 800 °C this oxygen concentration falls below the detection limit of less than 1 %. Incipient W2C phase formation occurs during annealing at 900 °C. The final state, the WC phase, is reached after annealing at 1100 °C.


2016 ◽  
Vol 698 ◽  
pp. 8-12 ◽  
Author(s):  
Shinichi Furusawa ◽  
Yohei Minami

In this study, KAlSi3O8 was synthesized by a solid-phase reaction at 900, 1000 and 1100 °C, using K2CO3, Al2O3 and SiO2 as the starting materials. The powder X-ray diffraction profile of the compound thus prepared was confirmed to contain a mixture of crystalline and glass phases. In addition, a higher sintering temperature of greater than 1000 °C possibly led to the decrease in the crystalline phase. From the temperature dependence of dc conductivity, activation energies for ionic transport were estimated to be 0.79–0.84 eV. The frequency-dependence of the real part of electrical conductivity suggests that the mechanism of ionic transport in the dispersion region possibly depends on the crystallinity of KAlSi3O8.


Author(s):  
Muhkametkali Mataev ◽  
Moldir Abdraimova ◽  
A. Atabay

The complex oxide phase of the composition YbBiNaFe2O6,5 was synthesized by the high-temperature solid-phase reaction. X-ray diffraction analysis was used to study the structure for the first time; the type of syngony, unit cell parameters, X-ray diffraction and pycnometric densities were determined. X-ray diffraction was carried out by homology method from the initial fluorite structure δBi2O3. The method of least squares refined the parameters of the crystal lattice. The parameters of the orthorhombic lattice of complex mixed ferrite at the value of the number of formula units Z=4 are: a=5.2319, в=5.2186, с=7.5702 Å. The correctness of the results of the X-ray diffraction of complex mixed ferrite was confirmed by the good agreement between the experimental and calculated values of the inverse squares of the interplanar distances (104/d2). Satisfactory consistency of the values of the X-ray and pycnometric densities, ρrad = 8.335, ρpik = 8.328 g/cm3, proves the correctness of the results of the experiment. A comparative analysis of the interrelation between the parameters of the crystal lattice and the parameters of the crystal lattices of the initial oxide δBi2O3. The analysis shows the values of the parameters “a” and “c” are in satisfactory agreement with the parameters of the crystal lattice δBi2O3, the parameter “c” is distorted from the value of the parameter “a” on √2.


2008 ◽  
Vol 569 ◽  
pp. 249-252 ◽  
Author(s):  
Hom Nath Luitel ◽  
Takanori Watari ◽  
Toshio Torikai ◽  
Mitsunori Yada

Sr4Al14O25:Eu2+, Dy3+ long persistent phosphors with different B, Eu and Dy contents were prepared by solid phase reaction at various temperatures in H2/N2=1/9 atmosphere. X- ray diffraction and scanning electron microscopy observations showed that, when the phosphor was doped with 40 at% B, single dense Sr4Al14O25 phase was formed but for the samples with less than 40 at% B, mixed phases containing SrAl12O19 and SrAl2O4 were observed while for higher B content (100 at%) SrAl2B2O7 phases appeared. The phosphor showed emission peak centered at 500 nm with blue green color. When 40 at% of H3BO3 was added and doped with 4 at% of Eu and 8 at% of Dy, it showed the maximum initial intensity of 3170 mcd.m-2 and the longest persistency which is greater than 20 h over value of 5 mcd.m-2.


2007 ◽  
Vol 353-358 ◽  
pp. 2139-2142
Author(s):  
Chang Sheng Li ◽  
Yan Qing Liu ◽  
Jun Mao Li

large-scale and elegant one-dimension tubular nanostructure TaS2, have been generated successfully employing solid-phase reaction growth with tantalum and sulfur powders. Detailed experimental procedures, and the characterization of associated product, have been evaluated using transmission electron microscopy (TEM) and other techniques. The results show that the reaction yielded a lot of one dimension nanostructures of TaS2 with average diameter of one hundred nanometers and length of several micrometers (or several ten micrometers). Moreover, effect of TaS2 nanostructure, as additive in commercial lubricating oil T40, was initially measured by UMT Multi-specimen Test System (UMT-2). The results show, as additive, antiwear and bearing weight ability of 1-D TaS2 nanostructure, excelled ordinary lubricating oil at atmosphere.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5356
Author(s):  
Weihua Chen ◽  
Jiancheng Tang ◽  
Xinghao Lin ◽  
Yunlong Ai ◽  
Nan Ye

In the present study, high-purity ternary-phase nitride (Ti2AlN) powders were synthesized through microwave sintering using TiH2, Al, and TiN powders as raw materials. X-ray diffraction (XRD), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were adopted to characterize the as-prepared powders. It was found that the Ti2AlN powder prepared by the microwave sintering of the 1TiH2/1.15Al/1TiN mixture at 1250 °C for 30 min manifested great purity (96.68%) with uniform grain size distribution. The formation mechanism of Ti2AlN occurred in four stages. The solid-phase reaction of Ti/Al and Ti/TiN took place below the melting point of aluminum and formed Ti2Al and TiN0.5 phases, which were the main intermediates in Ti2AlN formation. Therefore, the present work puts forward a favorable method for the preparation of high-purity Ti2AlN powders.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hui Yan ◽  
Ying Deng ◽  
Yong Yao Su ◽  
Shan Jiang ◽  
Qiao Wang Chen ◽  
...  

Ti(C, N)-based cermet materials represent the best choice of materials for the manufacturing industry and military products. In this study, we use cubic β-cobalt(β-Co) as the binder phase to strengthen constructed cermets. At the same time, to optimize the microstructure, (Ti, W, Mo, Ta) (C, N) powders are added to form two kinds of core-rim morphologies. Here, β-cobalt powders with face-centered cubic structures are obtained by the solid-phase reaction of high-energy ball milling. A solid-phase chemical reaction and a carbothermic reduction-nitridation method are used to prepare the (Ti, W, Mo, Ta) (C, N) powders. In our process, first we mix the cobalt and (Ti, W, Mo, Ta) (C, N) powders; then we press the powder mixtures into rectangular samples and sinter them in a pressure sintering furnace to obtain Ti(C, N)-based cermets with two kinds of core-rim structure, that is, black core/white rim and white core/gray rim. The results show that the new cermets demonstrate excellent toughness and performance.


Sign in / Sign up

Export Citation Format

Share Document