scholarly journals Silver Nanoparticle-Based Nanocomposites for Combating Infectious Pathogens: Recent Advances and Future Prospects

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 581
Author(s):  
Md A. Wahab ◽  
Luming Li ◽  
Hongmei Li ◽  
Ahmed Abdala

Silver nanoparticles (Ag NPs) and their nanocomposites with polymers are potent agents for antibacterial and disinfectant applications. The structural parameters of Ag-NPs, such as size, shape, and surface area, are very critical for developing appropriate formulations for the targeted applications. The impact of these factors on the performance of Ag NPs is analyzed. Ag NPs with a broad spectrum of antibacterial activities have already found applications in wound and burn dressing, food preservation, agricultural ponds, treatment for infected areas, coatings, water treatment, and other biomedical applications. Ag NPs are quite useful against antibiotic-resistant bacteria, but their level of toxicity needs careful investigation as their toxicity could be very harmful to human health and the environment. This review discusses the challenges and prospects of various Ag NPs and their composites. The review will enrich the knowledge about the efficiency and mechanism of various Ag nanoparticle-based antibacterial agents.

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2870
Author(s):  
Md Abdul Wahab ◽  
Li Luming ◽  
Md Abdul Matin ◽  
Mohammad Rezaul Karim ◽  
Mohammad Omer Aijaz ◽  
...  

Silver has become a potent agent that can be effectively applied in nanostructured nanomaterials with various shapes and sizes against antibacterial applications. Silver nanoparticle (Ag NP) based-antimicrobial agents play a major role in different applications, including biomedical applications, as surface treatment and coatings, in chemical and food industries, and for agricultural productivity. Due to advancements in nanoscience and nanotechnology, different methods have been used to prepare Ag NPs with sizes and shapes reducing toxicity for antibacterial applications. Studies have shown that Ag NPs are largely dependent on basic structural parameters, such as size, shape, and chemical composition, which play a significant role in preparing the appropriate formulation for the desired applications. Therefore, this review focuses on the important parameters that affect the surface interaction/state of Ag NPs and their influence on antimicrobial activities, which are essential for designing future applications. The mode of action of Ag NPs as antibacterial agents will also be discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Thanh Chung Pham ◽  
Van-Nghia Nguyen ◽  
Yeonghwan Choi ◽  
Dongwon Kim ◽  
Ok-Sang Jung ◽  
...  

The ability to detect hypochlorite (HOCl/ClO−) in vivo is of great importance to identify and visualize infection. Here, we report the use of imidazoline-2-thione (R1SR2) probes, which act to both sense ClO− and kill bacteria. The N2C=S moieties can recognize ClO− among various typical reactive oxygen species (ROS) and turn into imidazolium moieties (R1IR2) via desulfurization. This was observed through UV–vis absorption and fluorescence emission spectroscopy, with a high fluorescence emission quantum yield (ՓF = 43–99%) and large Stokes shift (∆v∼115 nm). Furthermore, the DIM probe, which was prepared by treating the DSM probe with ClO−, also displayed antibacterial efficacy toward not only Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) but also methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum ß-lactamase–producing Escherichia coli (ESBL-EC), that is, antibiotic-resistant bacteria. These results suggest that the DSM probe has great potential to carry out the dual roles of a fluorogenic probe and killer of bacteria.


2021 ◽  
Vol 22 ◽  
Author(s):  
Namita Sharma ◽  
Anil K. Chhillar ◽  
Sweety Dahiya ◽  
Pooja Choudhary ◽  
Aruna Punia ◽  
...  

The escalating emergence and prevalence of infections caused by multi-drug resistant (MDR) pathogenic bacteria accentuate the crucial need to develop novel and effectual therapeutic strategies to control this threat. Recent past surprisingly indicates a staggering decline in effective strategies against MDR. Different approaches have been employed to minimize the effect of resistance but the question still lingers over the astounding number of drugs already tried and tested to no avail, furthermore, the detection of new drug targets and the action of new antibacterial agents against already existing drug targets also complicate the condition. Antibiotic adjuvants are considered as one such promising approach for overcoming the bacterial resistance. Adjuvants can potentiate the action of generally adopted antibacterial drugs against MDR bacterial pathogens either by minimizing the impact and emergence of resistance or improving the action of antibacterial drugs. This review provides an overview of mechanism of antibiotic resistance, main types of adjuvants and their mode of action, achievements and progression.


2019 ◽  
Vol 25 (16) ◽  
pp. 1861-1865 ◽  
Author(s):  
Naira Sahakyan ◽  
Margarit Petrosyan ◽  
Armen Trchounian

Overcoming the antibiotic resistance is nowadays a challenge. There is still no clear strategy to combat this problem. Therefore, the urgent need to find new sources of antibacterial agents exists. According to some literature, substances of plant origin are able to overcome bacterial resistance against antibiotics. Alkanna species plants are among the valuable producers of these metabolites. But there is a problem of obtaining the standardized product. So, this review is focused on the discussion of the possibilities of biotechnological production of antimicrobial agents from Alkanna genus species against some microorganisms including antibiotic resistant bacterial strains.


Nanomedicine ◽  
2016 ◽  
Vol 11 (19) ◽  
pp. 2497-2510 ◽  
Author(s):  
Yen-Ling Kuo ◽  
Sin-Ge Wang ◽  
Ching-Yi Wu ◽  
Kai-Chieh Lee ◽  
Chan-Jung Jao ◽  
...  

1992 ◽  
Vol 38 (10) ◽  
pp. 1061-1065 ◽  
Author(s):  
Ruth-Anne Sandaa ◽  
Vigdis Lid Torsvik ◽  
Jostein Goksøyr

Antibiotic-resistant bacteria were isolated from sediment samples collected beneath two fish farms west of Bergen (Norway). The samples were collected just after the fish had been treated with oxytetracycline. Eighty-four bacterial isolates were tested for susceptibility to antibacterial agents. Most of the isolates were resistant to oxytetracycline, kanamycin, and sulfamethoxazole. Transferable plasmid-related resistance was shown by direct cell transfer and agarose gel electrophoresis. Among 34 multiple-resistant isolates, 7 isolates were able to transfer resistance to Escherichia coli HB101. Phenotypical characterization indicated that these seven isolates belonged to the genera Vibrio and Pseudomonas. The results indicate that sediments beneath fish farms may serve as a reservoir for transferable antimicrobial resistance genes. Key words: drug resistance, gene transfer, marine sediment bacteria.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ruixuan Wang ◽  
Bing Li ◽  
Li Zhang ◽  
Yuee Hou ◽  
Huajian Lin ◽  
...  

The oyster is one of the most abundantly harvested shellfish in the world. To explore the impact of salinity on antibiotic-resistant bacteria (ARB) and the microbial community associated with farmed oysters, oysters were taken from high-, medium-, and low-salinity zones (labeled HS, MS, and LS, respectively) in Qinzhou Bay of Beibu Gulf, China. ARB were tested with the Kirby–Bauer method. Species of ARB were confirmed by 16 S rDNA analysis. Microbial communities were analyzed by high-throughput sequencing technology. The results indicate that HS-derived ARB (>60%) resisted β-lactams and aminoglycosides and that LS-derived strains resisted macrolide and tetracyclines. All strains resisted 4 or more antibiotics. A total of 542 operational taxonomic units were detected in the samples, with Shewanella, Vibrio, and Endozoicomonas being the dominant genera (>80%), although distributed differently among the different salinity samples. The oyster microbial richness ranked as MS > LS > HS. This study provides an important reference for future efforts to explain factors or mechanisms underlying correlations between ARB, the microbiome, and salinity and thus the potential health of oysters in this region.


Sign in / Sign up

Export Citation Format

Share Document