scholarly journals Resistive Switching Characteristics Improved by Visible-Light Irradiation in a Cs2AgBiBr6-Based Memory Device

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1361
Author(s):  
Fengzhen Lv ◽  
Tingting Zhong ◽  
Yongfu Qin ◽  
Haijun Qin ◽  
Wenfeng Wang ◽  
...  

Light-modulated lead-free perovskites-based memristors, combining photoresponse and memory, are promising as multifunctional devices. In this work, lead-free double perovskite Cs2AgBiBr6 films with dense surfaces and uniform grains were prepared by the low-temperature sol-gel method on indium tin oxide (ITO) substrates. A memory device based on a lead-free double perovskite Cs2AgBiBr6 film, Pt/Cs2AgBiBr6/ITO/glass, presents obvious bipolar resistive switching behavior. The ROFF/RON ratio under 445 nm wavelength light illumination is ~100 times greater than that in darkness. A long retention capability (>2400 s) and cycle-to-cycle consistency (>500 times) were observed in this device under light illumination. The resistive switching behavior is primarily attributed to the trap-controlled space-charge-limited current mechanism caused by bromine vacancies in the Cs2AgBiBr6 medium layer. Light modulates resistive states by regulating the condition of photo-generated carriers and changing the Schottky-like barrier of the Pt/Cs2AgBiBr6 interface under bias voltage sweeping.

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1155
Author(s):  
Yuan-Wen Hsiao ◽  
Shi-Yu Wang ◽  
Cheng-Liang Huang ◽  
Ching-Chich Leu ◽  
Chuan-Feng Shih

In this study, a glass/indium tin oxide (ITO)/formamidinium-methylammonium-cesium (FA-MA-Cs) tri-cation lead iodide perovskite/poly(methyl methacrylate (PMMA)/Al memory device with a controlled composition of (FA0.75MA0.25)1-xCsxPbI3 (x = 0–0.1) is demonstrated to exhibit bipolar resistive switching behavior. The tri-cation organic–inorganic metal halide perovskite film was prepared by a one-step solution process in which the amount of Cs was varied to modify the property of FA0.75MA0.25PbI3. It was found that the microstructure and defect properties of films are highly dependent on the contents of FA, MA, and Cs in the perovskite. The results found that 5% CsI doping is the optimized condition for improving the quality of FA0.75MA0.25PbI3, forming a high quality tri-cation perovskite film with a smooth, uniform, stable and robust crystalline grain structure. The resistive switching on/off ratio of the (FA0.75MA0.25)0.95Cs0.05PbI3 device is greater than 103 owing to the improved thin-film quality. Moreover, for the 5% CsI doped FA0.75MA0.25PbI3 films, the endurance and the stability of retention are better than the non-doped film. The improved microstructure and memory properties are attributed to the balance stress of FA/MA/Cs with different ionic size. It suggests the potential to achieve a desired resistive memory property of tri-cationic perovskite by carefully adjusting the cation ratios.


2020 ◽  
Author(s):  
Fengzhen Lv ◽  
Kang Ling ◽  
Tingting Zhong ◽  
Fuchi Liu ◽  
Xiaoguang Liang ◽  
...  

Abstract High-quality CH3NH3PbI3-xClx (MAPIC) films were prepared using potassium chloride (KCl) as an additive on indium tin oxide(ITO)-coated glass substrates using a simple one-step and low-temperature solution reaction. The Au/KCl-MAPIC/ITO/Glass devices exhibited obvious multilevel resistive switching behavior, moderate endurance, and good retention performance. Electrical conduction analysis indicated that the resistive switching behavior of the KCl-doped MAPIC films was primarily attributed to the trap-controlled space-charge-limited current conduction that was caused by the iodine vacancies in the films. Moreover, the modulations of the barrier in the Au/KCl-MAPIC interface under bias voltages were thought to be responsible for the resistive switching in the carrier injection trapping/detrapping process.


2020 ◽  
Author(s):  
Fengzhen Lv ◽  
Kang Ling ◽  
Tingting Zhong ◽  
Fuchi Liu ◽  
Xiaoguang Liang ◽  
...  

Abstract High-quality CH3NH3PbI3-xClx (MAPIC) films were prepared using potassium chloride (KCl) as an additive on indium tin oxide(ITO)-coated glass substrates using a simple one-step and low-temperature solution reaction. The Au/KCl-MAPIC/ITO/Glass devices exhibited obvious multilevel resistive switching behavior, moderate endurance, and good retention performance. Electrical conduction analysis indicated that the resistive switching behavior of the KCl-doped MAPIC films was primarily attributed to the trap-controlled space-charge-limited current conduction that was caused by the iodine vacancies in the films. Moreover, the modulations of the barrier in the Au/KCl-MAPIC interface under bias voltages were thought to be responsible for the resistive switching in the carrier injection trapping/detrapping process.


2016 ◽  
Vol 19 (2) ◽  
pp. 92-100
Author(s):  
Ngoc Kim Pham ◽  
Thang Bach Phan ◽  
Vinh Cao Tran

In this study, we have investigated influences of the thickness on the structure, surface morphology and resistive switching characteristics of CrOx thin films prepared by using DC reactive sputtering technique. The Raman and FTIR analysis revealed that multiphases including Cr2O3, CrO2, Cr8O21... phases coexist in the microstructure of CrOx film. It is noticed that the amount of stoichiometric Cr2O3 phase increased significantly as well as the surface morphology were more visible with less voids and more densed particles with larger thickness films. The Ag/CrOx/FTO devices exhibited bipolar resistive switching behavior and high reliability. The resistive switching ratio has decreased slightly with the thickness increments and was best achieved at CrOx – 100 nm devices.


Sign in / Sign up

Export Citation Format

Share Document