scholarly journals Enhanced Photocatalytic Degradation of Ternary Dyes by Copper Sulfide Nanoparticles

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2000
Author(s):  
Peter A. Ajibade ◽  
Abimbola E. Oluwalana

We report the effect of thermolysis time on the morphological and optical properties of CuS nanoparticles prepared from Cu(II) dithiocarbamate single-source precursor. The as-prepared copper sulfide nanoparticles were used as photocatalysts for the degradation of crystal violet (CV), methylene blue (MB), rhodamine B (RhB), and a ternary mixture of the three dyes (CV/MB/RhB). Powder XRD patterns confirmed the hexagonal covellite phase for the CuS nanoparticles. At the same time, HRTEM images revealed mixed shapes with a particle size of 31.47 nm for CuS1 prepared at 30 min while CuS2 prepared at 1 h consists of mixtures of hexagonal and nanorods shaped particles with an average size of 21.59 nm. Mixed hexagonal and spherically shaped particles with a size of 17.77 nm were obtained for CuS3 prepared at 2 h. The optical bandgaps of the nanoparticles are 3.00 eV for CuS1, 3.26 eV for CuS2 and 3.13 eV for CuS3. The photocatalytic degradation efficiency showed that CuS3 with the smallest particle size is the most efficient photocatalyst and degraded 85% of CV, 100% of MB, and 81% of RhB. The as-prepared CuS showed good stability and recyclability and also degraded ternary dyes mixture (CV/MB/RhB) effectively. The byproducts of the dye degradation were evaluated using ESI-mass spectrometry.

MRS Advances ◽  
2020 ◽  
pp. 1-10
Author(s):  
M.I. Ayala-Sánchez ◽  
J. Escorcia-García ◽  
I.L. Alonso-Lemus

Abstract Mesoporous-TiO2:Sb layers were developed by sol-gel and spin-coating techniques for their application as photoanodes in SSSCs. The effect of Sb doping (4 mol%) and PVP loading (0.2-0.4 g) on the optical, structural, morphological, and chemical properties were studied. SEM results showed that the morphology, porosity, and particle size in the mp-TiO2:Sb depend on the amount of polymer and Sb doping. In particular, the doping decreases the porosity and particle size. XRD patterns showed well-defined reflections resembling the anatase crystalline structure. The crystallite size was of 22.61 and 16.27 nm for the undoped layers with 0.2 and 0.4 of PVP, which decreased to 17.69 and 7.93 nm for the doped ones. It was not observed the presence of Sb2O3 or Sb metallic, indicating Sb ions were inserted in the TiO2 lattice by substitution of Ti ions. Analysis of XPS spectra showed the presence of Ti4+, O2-, and Sb3+ in the mp-TiO2:Sb layers. The optical bandgaps of the mp-TiO2:Sb were in the range of 3.14-3.33 eV. The evaluation of the mp-TiO2:Sb layers as photoanodes in the Sb2Se3-sensitized solar cells gives a Voc of 261 mV, a Jsc of 3.92 mA/cm2, and a PCE of 0.71%.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4138 ◽  
Author(s):  
Israel Ceja ◽  
Karla Josefina González-Íñiguez ◽  
Alejandra Carreón-Álvarez ◽  
Gabriel Landazuri ◽  
Arturo Barrera ◽  
...  

Nanostructured films with electrical conductivity in the semiconductor region were prepared in a polymeric matrix of poly(vinyl alcohol) (PVA) with nanostructures of chitosan-gold nanoparticles (AuNPs)/single-wall carbon nanotubes carboxylic acid functionalized (SWCNT-COOH) (chitosan-AuNPs/SWCNT-COOH) self-assembled. Dispersion light scattering (DLS) was used to determine the average particle sizes of chitosan-AuNPs, z-average particle size (Dz) and number average particle size (Dn), and the formation of crystalline domains of AuNPs was demonstrated by X-ray diffraction (XRD) patterns and observed by means of transmission electron microscopy (TEM). The electrostatic interaction was verified by Fourier transform infrared spectroscopy (FTIR). The electrical conductivity of PVA/chitosan-AuNPs/SWCNT-COOH was determined by the four-point technique and photocurrent. The calculated Dn values of the chitosan-AuNPs decreased as the concentration of gold (III) chloride trihydrate (HAuCl4·3H2O) increased: the concentrations of 0.4 and 1.3 mM were 209 and 90 nm, respectively. Average crystal size (L) and number average size (D) of the AuNPs were calculated in the range of 13 to 24 nm. Electrical conductivity of PVA/chitosan-AuNPs/SWCNT-COOH films was 3.7 × 10−5 σ/cm determined by the four-point technique and 6.5 × 10−4 σ/cm by photocurrent for the SWCNT-COOH concentration of 0.5 wt.% and HAuCl4·3H2O concentration of 0.4 mM. In this investigation, the protonation of the amine group of chitosan is fundamental to prepare PVA films with nanostructures of self-assembled chitosan-AuNPs/SWCNT-COOH.


2020 ◽  
Vol 10 ◽  
Author(s):  
Manish Dwivedi ◽  
Vijay Tripathi ◽  
Dhruv Kumar ◽  
Dwijendra K. Gupta

Aims: CdS nanoparticles are an attractive material having application in various field like as pigment in paints, biotag for bioimaging and many more optoelectronic as well as biological applications. Present study aims to synthesize and characterize the CdS nanoparticles to make it applicable in different areas Objectives: Preparation CdS nanoparticles by using simple and facile chemical methods and further physical and structural characterization using various physical tools Methods: In present work CdS nanoparticles has been synthesized by using rationally simple chemical precipitation method with some modi-fication on temperature and incubation time in existed methods. Characterizations were done by employing XRD, SEM, TEM, AFM tech-niques Results: Simple chemical method produces the CdS nanoparticles with the size about 100-200 nm in length and 5-10 nm in diameter. The SEM studies show that the CdS nanoparticles can agglomerate and form a continuous network like structure. The X-ray diffraction (XRD) measurements show the single-phase formation of CdS nanoparticles with the structure of cubic phase, and the broadening of XRD patterns indicates that the prepared samples are nanostructured. Our analysis on CdS nanoparticles by using transmission electron microscope and atomic force microscope (AFM) revealed that the nanoparticles form both spherical and nearly rod shaped with the average size applicable for biotagging. UV-Vis spectroscopic analysis reveals blue shift in the absorption peak probably caused by quantum confinement Conclusion: The observed CdS nanoparticles were appeared yellow in color. The XRD pattern of the CdS nanoparticles showed that the materials were of nanometric sized regime with a predominantly cubic phase along with the rod and round morphology. The study and char-acterization of CdS nanoparticles will bring us a new approach to understand biological problem by tagging nanoparticles with biomolecules and further suggests that the CdS nanoparticles formulate it more suitable biocompatible nanomaterial for biotagging and bioimaging


Author(s):  
Manmeet Kaur ◽  
Suman Prajapati ◽  
Samneek Cholia ◽  
Jaskeet Singh Mann ◽  
Gurpreet Singh

Background: In the recent years, the green synthesis of nanoparticles has taken a lead role over the conventional chemical and physical approach due to its non-toxic, cost effective parameters and has found its place in various applications. Objectives: The major objectives of this study was to synthesise and characterize the copper nanoparticles using the rose extract at different set of conditions and analyse these nanoparticles as a source of dye degradation agent under sunlight conditions. Methods: Present study was conducted with the aim to synthesis the copper nanoparticle using the rose petal extract. The components present the in the extract act as the reduction and stabilization agents for the synthesis of CuNPs. The synthesized nanoparticles were characterized by using UV-VIS, FTIR, XRD and SEM analysis. Photocatalytic degradation of two dyes (Malachite Green and Carbol fuchsin) was analysed using double beam spectroscopic analysis Results: UV-Vis analysis indicated the presence of a peak at around 630 nm. The FT-IR analysis indicated the involvement of various biomolecules during the synthesis of nanoparticles. The structure and the conformation was elucidated using XRD and SEM showed the agglomerated form of the synthesized nanoparticles with the size range of about 60-90 nm. The synthesised copper nanoparticles was used for degradation of malachite green and carbol fuchsin dye using photocatalytic under sunlight irradiation. UV-Vis spectral analysis indicated that synthesised copper nanoparticle act more effective in degradation of malachite green (around 95%) whereas carbol fuchsin showed a maximum degradation by 52% therefore suggesting that CuNPs act as an efficient photo catalyst in dye degradation. Conclusion: The results obtained from this study indicates that rose extract has the potential of synthesis of copper nanoparticles which is non-toxic and convenient approach as compared to physical and chemical synthesis. These nanoparticles can be effectively employed as dye decolourization agents to treat industrial effluent and prevent the environmental pollution.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1721
Author(s):  
Heon Yong Jeong ◽  
Hyung San Lim ◽  
Ju Hyuk Lee ◽  
Jun Heo ◽  
Hyun Nam Kim ◽  
...  

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 μm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.


2015 ◽  
Vol 1112 ◽  
pp. 47-52 ◽  
Author(s):  
Frida Ulfah Ermawati ◽  
Suasmoro Suasmoro ◽  
Suminar Pratapa

A study of liquid mixing route to synthesize high purity Mg0.8Zn0.2TiO3 nanopowder, a candidate dielectric ceramics, has been successfully performed. Formation of the phases on the dried powder was studied using TG/DTA, XRD and FT-IR data. Rietveld analysis on the collected XRD patterns confirmed the formation of solid solution in the system. Such solid solution can be obtained from the powder calcined at 500 °C, but calcination at 550 °C gave rise to the most optimum molar purity up to 98.5% without intermediate phases. The role of Zn ions on the formation of solid solution was also discussed. Homogeneity of particle size distribution and nano-crystallinity of the system was verified from the particle size analyzer data, TEM image and the Rietveld analysis output.


2010 ◽  
Vol 123-125 ◽  
pp. 611-614 ◽  
Author(s):  
Yu Ping Tong ◽  
Rui Zhu Zhang ◽  
Shun Bo Zhao ◽  
Chang Yong Li

Well-dispersed fluorite Er2Zr2O7 nanocrystals have been successfully prepared by a convenient salt-assistant combustion method. The effects of calcinations temperature and salt category on the characteristics of the products were investigated by XRD and TEM. The thermal treatment temperature has an important effect on crystal size and lattice distortion of the nanocrystals. The experiment showed that the introduction of salt in the combustion synthesis process resulted in the formation of well-dispersed Er2Zr2O7 nanocrystals. The average size was 30 nm and was in agreement with the XRD result, which indicated that the nanocrystals were uniform in particle size distribution. Moreover, the possible formation process in the salt-assisted combustion synthesis was also analyzed.


2015 ◽  
Vol 29 (01) ◽  
pp. 1450254 ◽  
Author(s):  
M. Shayani Rad ◽  
A. Kompany ◽  
A. Khorsand Zak ◽  
M. E. Abrishami

Pure and silver added zinc oxide nanoparticles ( ZnO -NPs and ZnO : Ag -NPs) were synthesized through a modified sol–gel method. The prepared samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. In the XRD patterns, silver diffracted peaks were also observed for the samples synthesized at different calcination temperatures of 500°C, 700°C, 900°C except 1100°C, in addition to ZnO . TEM images indicated that the average size of ZnO : Ag -NPs increases with the amount of Ag concentration. The PL spectra of the samples revealed that the increase of Ag concentration results in the increase of the visible emission intensity, whereas by increasing the calcination temperature the intensity of visible emission of the samples decreases.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2094
Author(s):  
Seok-Ki Jung ◽  
Dae Woon Kim ◽  
Jeongyol Lee ◽  
Selvaponpriya Ramasamy ◽  
Hyun Sik Kim ◽  
...  

The aim of this study was to present a control method for modulating the translucency of lithium disilicate ceramics through thermal refinement. Identical lithium disilicate blocks were thermally refined using four different heat treatment schedules, and the microstructure, translucency, and flexural strength of the ceramics were investigated in detail by SEM, spectroscopy, and a piston-on-three-ball test. The results showed that ceramics treated under higher heat had larger grains, with an average size between 240 and 1080 nm. In addition, a higher transmittance of all wavelengths was observed in ceramics treated under lower heat, and the transmittance in the 550 nm wavelength ranged from 27 to 34%. The results suggest that the translucency of ceramics can be modified through thermal refinement under two conditions: (1) the particle size of the ceramic is small enough to achieve minimal grain-boundary light scattering, and (2) the percentage of particles allowing visible light transmission is altered by the heat treatment.


2019 ◽  
Vol 22 (6) ◽  
pp. 299-304
Author(s):  
Heny Puspita Dewi ◽  
Joko Santoso ◽  
Nur Firda Trianda ◽  
Rodiansono Rodiansono

Carbon-titanium oxide nanocomposite (denoted as @C-TiO2) was successfully synthesized via hydrothermal method at 150°C for 24 h. The C-TiO2 nanocomposite was furtherly modified by adding an Ag metal dopant (denoted as Ag@C-TiO2) to improve and applied to the photocatalytic degradation of Sasirangan textile wastewater. The composite photocatalysts were characterized by XRD and UV–Vis DRS spectroscopies. XRD patterns showed that TiO2 in @C-TiO2 mainly consisted of a brookite phase, as indicated by a series sharp diffraction peak at 2θ = 27.2° (111), 31.5° (121) and 55.9° (241). The calculated band gap energy (Eg) derived from UV-Vis DRS spectra for TiO2, @C-TiO2, and Ag@C-TiO2 were 2.95 eV, 2.54 eV, and 2.74 eV, respectively. Ag@C-TiO2 photocatalyst was found to be active for the photocatalytic degradation of Sasirangan textile wastewater, as indicated by the change of wastewater color from dark to clear. The quantitative photocatalytic activity of Ag@C-TiO2 was evaluated in the degradation of methylene blue, whereas the conversion of methylene blue was 41.3%. The addition of Ag to @C-TiO2 is believed to play an essential role in the enhancement of photocatalytic activity.


Sign in / Sign up

Export Citation Format

Share Document