scholarly journals Wettability Changes Due to Nanomaterials and Alkali—A Proposed Formulation for EOR

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2351
Author(s):  
Samhar Saleh ◽  
Elisabeth Neubauer ◽  
Ante Borovina ◽  
Rafael E. Hincapie ◽  
Torsten Clemens ◽  
...  

We investigated the usage of two silica nanomaterials (surface-modified) and alkali in enhanced oil recovery through Amott spontaneous imbibition tests, interfacial tension (IFT) measurements, and phase behavior. We evaluated the wettability alteration induced by the synergy between nanomaterials and alkali. Moreover, numerical analysis of the results was carried out using inverse Bond number and capillary diffusion coefficient. Evaluations included the use of Berea and Keuper outcrop material, crude oil with different total acid numbers (TAN), and Na2CO3 as alkaline agent. Data showed that nanomaterials can reduce the IFT, with surface charge playing an important role in this process. In synergy with alkali, the use of nanomaterials led to low-stable IFT values. This effect was also seen in the phase behavior tests, where brine/oil systems with lower IFT exhibited better emulsification. Nanomaterials’ contribution to the phase behavior was mainly the stabilization of the emulsion middle phase. The influence of TAN number on the IFT and phase behavior was prominent especially when combined with alkali. Amott spontaneous imbibition resulted in additional oil recovery ranging from 4% to 50% above the baseline, which was confirmed by inverse Bond number analysis. High recoveries were achieved using alkali and nanomaterials; these values were attributed to wettability alteration that accelerated the imbibition kinetics as seen in capillary diffusion coefficient analysis.

2021 ◽  
pp. 1-18
Author(s):  
Takaaki Uetani ◽  
Hiromi Kaido ◽  
Hideharu Yonebayashi

Summary Low-salinity water (LSW) flooding is an attractive enhanced oil recovery (EOR) option, but its mechanism leading to EOR is poorly understood, especially in carbonate rock. In this paper, we investigate the main reason behind two tertiary LSW coreflood tests that failed to demonstrate promising EOR response in reservoir carbonate rock; additional oil recovery factors by the LSW injection were only +2% and +4% oil initially in place. We suspected either the oil composition (lack of acid content) or the recovery mode (tertiary mode) was inappropriate. Therefore, we repeated the experiments using an acid-enriched oil sample and injected LSW in the secondary mode. The result showed that the low-salinity effect was substantially enhanced; the additional oil recovery factor by the tertiary LSW injection jumped to +23%. Moreover, it was also found that the secondary LSW injection was more efficient than the tertiary LSW injection, especially in the acid-enriched oil reservoir. In summary, it was concluded that the total acid number (TAN) and the recovery mode appear to be the key successful factors for LSW in our carbonate system. To support the conclusion, we also performed contact angle measurement and spontaneous imbibition tests to investigate the influence of acid enrichment on wettability, and moreover, LSW injection on wettability alteration.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2241
Author(s):  
Vladislav Arekhov ◽  
Rafael E. Hincapie ◽  
Torsten Clemens ◽  
Muhammad Tahir

The injection of chemicals into sandstones can lead to alterations in wettability, where oil characteristics such as the TAN (total acid number) may determine the wetting state of the reservoir. By combining the spontaneous imbibition principle and the evaluation of interfacial tension index, we propose a workflow and comprehensive assessment to evaluate the wettability alteration and interfacial tension (IFT) when injecting chemical-enhanced oil-recovery (EOR) agents. This study examines the effects on wettability alteration due to the application of alkaline and polymer solutions (separately) and the combined alkali–polymer solution. The evaluation focused on comparing the effects of chemical agent injections on wettability and IFT due to core aging (non-aged, water-wet and aged, and neutral to oil-wet), brine composition (mono vs. divalent ions); core mineralogy (~2.5% and ~10% clay), and crude oil type (low and high TAN). Amott experiments were performed on cleaned water-wet core plugs as well as on samples with a restored oil-wet state. IFT experiments were compared for a duration of 300 min. Data were gathered from 48 Amott imbibition experiments with duplicates. The IFT and baselines were defined in each case for brine, polymer, and alkali for each set of experiments. When focusing on the TAN and aging effects, it was observed that in all cases, the early time production was slower and the final oil recovery was longer when compared to the values for non-aged core plugs. These data confirm the change in rock surface wettability towards a more oil-wet state after aging and reverse the wettability alteration due to chemical injections. Furthermore, the application of alkali with high TAN oil resulted in a low equilibrium IFT. By contrast, alkali alone failed to mobilize trapped low TAN oil but caused wettability alteration and a neutral–wet state of the aged core plugs. For the brine composition, the presence of divalent ions promoted water-wetness of the non-aged core plugs and oil-wetness of the aged core plugs. Divalent ions act as bridges between the mineral surface and polar compound of the in situ created surfactant, thereby accelerating wettability alteration. Finally, for mineralogy effects, the high clay content core plugs were shown to be more oil-wet even without aging. Following aging, a strongly oil-wet behavior was exhibited. The alkali–polymer is demonstrated to be efficient in the wettability alteration of oil-wet core plugs towards a water-wet state.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1784-1802 ◽  
Author(s):  
Sepideh Veiskarami ◽  
Arezou Jafari ◽  
Aboozar Soleymanzadeh

Summary Recent investigations have shown that treatment with injected brine composition can improve oil production. Various mechanisms have been suggested to go through the phenomenon; nevertheless, wettability alteration is one of the most commonly proposed mechanisms in the literature. Wettability alteration of the porous media toward a more favorable state reduces the capillary pressure, consequently contributing to the oil detachment from pore walls. In this study, phase behavior, oil recovery, and wettability alteration toward a more favorable state were investigated using a combination of formulations of surfactant and modified low-salinity (LS) brine. Phase behaviors of these various formulations were examined experimentally through observations on relative phase volumes. Experiments were performed in various water/oil ratios (WORs) in the presence of two different oil samples, namely C1 and C2. These experiments were conducted to clarify the impact of each affecting parameter; in particular, the impact of resin and asphaltene of crude oil on the performance of LS surfactant (LSS) flooding. Hereafter, the optimal formulation was flooded into the oil-wet micromodel. Optimum formulations increased the capillary number more than four orders of magnitude higher than that under formation brine (FB) flooding, thus causing oil recovery rates of 61 and 67% for oil samples C1 and C2, respectively. Likewise, the wettability alteration potential of optimized formulations was studied through contact angle measurements. Results showed that LS and LSS solutions could act as possible wettability alternating methods for oil-wet carbonate rocks. Using the optimum formulation resulted in a wettability alteration index (WAI) of 0.66 for sample C1 and 0.49 for sample C2, while using LS brine itself ended in 0.51 and 0.29 for oil samples C1 and C2, respectively.


2021 ◽  
Author(s):  
Shaina Kelly ◽  
◽  
Ron J.M. Bonnie ◽  
Micheal J. Dick ◽  
Dragan Veselinovic ◽  
...  

Matrix wettability is a key driver in relative permeability and, hence, a critical factor controlling imbibition and drainage at UR fracture-matrix interfaces as well as enhanced oil recovery (EOR). In this study, we (1) adapt and apply the NMR-based wettability index (NWI) methodology of Looyestijn et al. (2006) to a variety of unconventional twin samples undergoing, respectively, spontaneous imbibition with oil-displacing-water and water-displacing-oil and (2) compare the robustness of this method among a variety of samples pairs and also to other NMR-based wettability methods. The samples analyzed cover a range of rock types, major formations, maturity and content of organic material. All displayed unique time-lapse wettability profiles and steady state NWI values. This work advances our previous works (Dick et al., 2019; Kelly et al., 2020) on this subject, where the viability of the methodology was established on end-member pilot samples, towards applicability as a UR SCAL method. The NWI methodology predicts T2 spectra using linear combinations (mixing) of “end-point” T2 spectra. The mixing ratios yielding the closest match to the measured spectra are then used to compute a wettability index. These mixing ratios were validated against (1) mass-balance calculations, (2) repeat experiments with heavy water (D2O) instead of H2O and (3) measured T1-T2 maps, enhancing confidence in the robustness of the method. Our comparisons show that alternative approaches representing the T2 spectra through a single mean T2 value or T2 peak-fit, fall short, especially in tight rocks where fast relaxation rate components tend to skew harmonic mean T2 values and also in samples where oil and water peaks are not clearly resolved. Full spectrum-based methods, akin to Looyestijn’s, appear more robust and stable over a much wider range of reservoir conditions. Repeated NMR acquisition throughout our long-term imbibition experiments shows that time-lapse NWI methodology probes the effects of rock properties, saturation changes, and injected fluid chemistry (enhanced oil recovery strategies) on wettability alteration. Additionally, this NWI study quantifies the wide variation in wettability among unconventional samples.


2021 ◽  
pp. 1-19
Author(s):  
D. Magzymov ◽  
T. Clemens ◽  
B. Schumi ◽  
R. T. Johns

Summary A potential enhanced oil recovery technique is to inject alkali into a reservoir with a high-total acid number (TAN) crude to generate soap in situ and reduce interfacial tension (IFT) without the need to inject surfactant. The method may be cost-effective if the IFT can be lowered enough to cause significant mobilization of trapped oil while also avoiding formation of gels and viscous phases. This paper investigates the potential field application of injecting alkali to generate in-situ soap and favorable phase behavior for a high-TAN oil. Oil analyses show that the acids in the crude are a complex mixture of various polar acids and not mainly carboxylic acids. The results from phase behavior experiments do not undergo typical Winsor microemulsion behavior transition and subsequent ultralow IFTs below 1×10−3 mN/m that are conventionally observed. Instead, mixing of alkali and crude/brine generate water-in-oil macroemulsions that can be highly viscous. For a specific range of alkali concentrations, however, phases are not too viscous, and IFTs are reduced by several orders of magnitude. Incremental coreflood recoveries in this alkali range are excellent, even though not all trapped oil is mobilized. The viscous phase behavior at high alkali concentrations is explained by the formation of salt-crude complexes, created by acids from the crude oil under the alkali environment. These hydrophobic molecules tend to agglomerate at the oil-water interface. Together with polar components from the crude oil, they can organize into a highly viscous network and stabilize water droplets in the oleic phase. Oil-soluble alcohol was added to counter those two phenomena at large concentrations, but typical Winsor phase behavior was still not observed. A physicochemical model is proposed to explain the salt-crude complex formation at the oil-water interface that inhibits classical Winsor behavior.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Yue Shi ◽  
Chammi Miller ◽  
Kishore Mohanty

Summary Carbonate reservoirs tend to be oil-wet/mixed-wet and heterogeneous because of mineralogy and diagenesis. The objective of this study is to improve oil recovery in low-temperature dolomite reservoirs using low-salinity and surfactant-aided spontaneous imbibition. The low-salinity brine composition was optimized using ζ-potential measurements, contact-angle (CA) experiments, and a novel wettability-alteration measure. Significant wettability alteration was observed on dolomite rocks at a salinity of 2,500 ppm. We evaluated 37 surfactants by performing CA, interfacial-tension (IFT), and spontaneous-imbibition experiments. Three (quaternary ammonium) cationic and one (sulfonate) anionic surfactants showed significant wettability alteration and produced 43–63% of original oil in place (OOIP) by spontaneous imbibition. At a low temperature (35°C), oil recovery by low-salinity effect is small compared with that by wettability-altering surfactants. Coreflood tests were performed with a selected low-salinity cationic surfactant solution. A novel coreflood was proposed that modeled heterogeneity and dynamic imbibition into low-permeability regions. The results of the “heterogeneous” coreflood were consistent with that of spontaneous-imbibition tests. These experiments demonstrated that a combination of low-salinity brine and surfactants can make originally oil-wet dolomite rocks more water-wet and improve oil recovery from regions bypassed by waterflood at a low temperature of 35°C.


Sign in / Sign up

Export Citation Format

Share Document