scholarly journals A Review on the Production Methods and Applications of Graphene-Based Materials

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2414
Author(s):  
Md Abdullah Al Faruque ◽  
Md Syduzzaman ◽  
Joy Sarkar ◽  
Kadir Bilisik ◽  
Maryam Naebe

Graphene-based materials in the form of fibres, fabrics, films, and composite materials are the most widely investigated research domains because of their remarkable physicochemical and thermomechanical properties. In this era of scientific advancement, graphene has built the foundation of a new horizon of possibilities and received tremendous research focus in several application areas such as aerospace, energy, transportation, healthcare, agriculture, wastewater management, and wearable technology. Although graphene has been found to provide exceptional results in every application field, a massive proportion of research is still underway to configure required parameters to ensure the best possible outcomes from graphene-based materials. Until now, several review articles have been published to summarise the excellence of graphene and its derivatives, which focused mainly on a single application area of graphene. However, no single review is found to comprehensively study most used fabrication processes of graphene-based materials including their diversified and potential application areas. To address this genuine gap and ensure wider support for the upcoming research and investigations of this excellent material, this review aims to provide a snapshot of most used fabrication methods of graphene-based materials in the form of pure and composite fibres, graphene-based composite materials conjugated with polymers, and fibres. This study also provides a clear perspective of large-scale production feasibility and application areas of graphene-based materials in all forms.

Author(s):  
Iqubal Hossain ◽  
Abu Zafar Al Munsur ◽  
Tae-Hyun Kim

Random copolymers made of both (PIM-polyimide) and (6FDA-durene-PI) were prepared for the first time by a facile one-step polycondensation reaction. By combining the highly porous and contorted structure of PIM (polymers with intrinsic microporosity) and high thermomechanical properties of PI (polyimide), the membranes obtained from these random copolymers [(PIM-PI)x-(6FDA-durene-PI)y] showed high CO2 permeability (> 1047 Barrer) with moderate CO2/N2 (> 16.5) and CO2/CH4 (> 18) selectivity, together with excellent thermal and mechanical properties. The membranes prepared from three different compositions of two comonomers (1:4, 1:6 and 1:10 of x:y), all showed similar morphological and physical properties, and gas separation performance, indicating ease of synthesis and practicability for large-scale production. The gas separation performance of these membranes at various pressure ranges (100–1500 torr) was also investigated.


2019 ◽  
Vol 10 ◽  
pp. 349-355 ◽  
Author(s):  
Eduardo Nery Duarte de Araujo ◽  
Thiago Alonso Stephan Lacerda de Sousa ◽  
Luciano de Moura Guimarães ◽  
Flavio Plentz

The large-scale production of high-quality and clean graphene devices, aiming at technological applications, has been a great challenge over the last decade. This is due to the high affinity of graphene with polymers that are usually applied in standard lithography processes and that, inevitably, modify the electrical proprieties of graphene. By Raman spectroscopy and electrical-transport investigations, we correlate the room-temperature carrier mobility of graphene devices with the size of well-ordered domains in graphene. In addition, we show that the size of these well-ordered domains is highly influenced by post-photolithography cleaning processes. Finally, we show that by using poly(dimethylglutarimide) (PMGI) as a protection layer, the production yield of CVD graphene devices is enhanced. Conversely, their electrical properties are deteriorated as compared with devices fabricated by conventional production methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Subash C. B. Gopinath ◽  
Periasamy Anbu ◽  
M. K. Md Arshad ◽  
Thangavel Lakshmipriya ◽  
Chun Hong Voon ◽  
...  

Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.


1993 ◽  
Vol 32 (1) ◽  
pp. 129-131
Author(s):  
Naureen Talha

The literature on female labour in Third World countries has become quite extensive. India, being comparatively more advanced industrially, and in view of its size and population, presents a pictures of multiplicity of problems which face the female labour market. However, the author has also included Mexico in this analytical study. It is interesting to see the characteristics of developing industrialisation in two different societies: the Indian society, which is conservative, and the Mexican society, which is progressive. In the first chapter of the book, the author explains that he is not concerned with the process of industrialisation and female labour employed at different levels of work, but that he is interested in forms of production and women's employment in large-scale production, petty commodity production, marginal small production, and self-employment in the informal sector. It is only by analysis of these forms that the picture of females having a lower status is understood in its social and political setting.


2018 ◽  
Vol 15 (4) ◽  
pp. 572-575 ◽  
Author(s):  
Ponnusamy Kannan ◽  
Samuel I.D. Presley ◽  
Pallikondaperumal Shanmugasundaram ◽  
Nagapillai Prakash ◽  
Deivanayagam Easwaramoorthy

Aim and Objective: Itopride is a prokinetic agent used for treating conditions like non-ulcer dyspepsia. Itopride is administered as its hydrochloride salt. Trimethobenzamide is used for treating nausea and vomiting and administered as its hydrochloride salt. The aim is to develop a novel and environmental friendly method for large-scale production of itopride and trimethobenzamide. Materials and Methods: Itopride and trimethobenzamide can be prepared from a common intermediate 4- (dimethylaminoethoxy) benzyl amine. The intermediate is prepared from one pot synthesis using Phyrdroxybenzaldehye and zinc dust and further reaction of the intermediate with substituted methoxy benzoic acid along with boric acid and PEG gives itopride and trimethobenzamide. Results: The intermediate 4-(dimethylaminoethoxy) benzylamine is prepared by treating p-hydroxybenzaldehyde and 2-dimethylaminoethyl chloride. The aldehyde formed is treated with hydroxylamine hydrochloride. The intermediate is confirmed by NMR and the purity is analysed by HPLC. Conclusion: Both itopride and trimethobenzamide were successfully synthesized by this method. The developed method is environmental friendly, economical for large-scale production with good yield and purity.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Author(s):  
Yuting Luo ◽  
Zhiyuan Zhang ◽  
Fengning Yang ◽  
Jiong Li ◽  
Zhibo Liu ◽  
...  

Large-scale production of green hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious...


Sign in / Sign up

Export Citation Format

Share Document