scholarly journals Fabrication and Application of Zeolite/Acanthophora Spicifera Nanoporous Composite for Adsorption of Congo Red Dye from Wastewater

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2441
Author(s):  
Ahmed Hamd ◽  
Asmaa Ragab Dryaz ◽  
Mohamed Shaban ◽  
Hamad AlMohamadi ◽  
Khulood A. Abu Al-Ola ◽  
...  

Systematic investigations involving laboratory, analytical, and field trials were carried out to obtain the most efficient adsorbent for the removal of congo red (CR) dye from industrial effluent. Modification of the zeolite (Z) by the Acanthophora Spicifera algae (AS; marine algae) was evaluated in terms of adsorption capability of the zeolite to remove CR dye from aqueous solution. The zeolite/algae composite (ZAS) was fabricated using the wet impregnation technique. The AS, Z, and the synthesized ZAS composite were analyzed utilizing various characterization techniques. The newly synthesized ZAS composite has an adsorption capacity that is significantly higher than that of Z and AS, particularly at low CR concentrations. Batch experiments were carried out to explore the effects of different experimental factors, as well as the dye adsorption isotherms and kinetics. Owing to the presence of intermolecular interactions, the computational analysis showed that the adsorption of the CR molecule on zeolite surfaces is exothermic, energetically favorable, and spontaneous. Furthermore, growing the zeolite surface area has no discernible effect on the adsorption energies in all configurations. The ZAS composite may be used as a low-cost substitute adsorbent for the removal of anionic dyes from industrial wastewater at lower dye concentrations, according to the experimental results. Adsorption of CR dye onto Z, AS, and ZAS adsorbents was adequately explained by pseudo-second-order kinetics and the Langmuir isotherm. The sorption mechanism was also evaluated using Weber’s intra-particle diffusion module. Finally, field testing revealed that the newly synthesized adsorbent was 98.0% efficient at extracting dyes from industrial wastewater, proving the foundation of modern eco-friendly materials that aid in the reuse of industrial wastewater.

2017 ◽  
Vol 36 (3-4) ◽  
pp. 872-887 ◽  
Author(s):  
Luying Ma ◽  
Guihua Zhao ◽  
Yaoyao Fang ◽  
Wei Dai ◽  
Na Ma

Herein, we demonstrate a simple and cost-effective method to prepare the new hierarchically Ni-doped porous CaCO3 monoliths in a large scale by mineralizing finger citron residue templates with a calcium acetate precursor. The morphology, microstructure, and element composition of as-prepared adsorbents are characterized by Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), and N2 adsorption, respectively. Adsorption performance of anionic dye Congo red was investigated in a batch experiment. The results showed that pseudo-second-order kinetic model and Langmuir adsorption isotherm matched well for the Congo red adsorption. Compared with previously reported adsorbents, due to positive and negative charge effect between Congo red and Ni, Ni-doped porous CaCO3 monoliths demonstrated a superior Congo red dye adsorption capability. The results of the present study substantiate that Ni-doped porous CaCO3 monoliths is a promising adsorbent for the removal of the anionic dyes from wastewater.


2021 ◽  
Vol 765 (1) ◽  
pp. 012089
Author(s):  
R Taufik ◽  
M Mohamad ◽  
R Wannahari ◽  
N F Shoparwe ◽  
WHW Osman ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 15 ◽  
Author(s):  
Mohamed H. Mohamed ◽  
Inimfon A. Udoetok ◽  
Lee D. Wilson

Pelletized biomaterial composites that contain chitosan (C) and torrefied wheat straw (S) at variable weight composition (C:S) were prepared using a facile blending process. The fractional content of the wheat straw was studied to elucidate the role of biomass on the pelletized product and effects of S-content on the physicochemical properties relevant to adsorption phenomena. Chitosan pellets (with and without S) were characterized by spectroscopic (FT-IR and 13C NMR) and thermal (TGA and DSC) techniques to provide support for their respective C:S composition. Confocal microscopy using fluorescein (FL) as a dye probe revealed the presence and an increase in the accessibility of the active sites for the composite pellets according to the S-content (wt %). Equilibrium and kinetic sorption studies using FL and reactive black (RB) dyes revealed an incremental adsorption affinity of the pellets with anionic dyes in variable charge states (FL and RB). The trend for dye adsorption parallels the incremental S-content (wt %) in the composite pellets. This study reports a first-example of a low-cost, facile, and sustainable approach for the valorization of straw and chitosan suitable for sorption-based applications in aqueous media.


Author(s):  
Neha bhadauria ◽  
Arjun Suresh

The present study analyzed the efficiency of a naturally derived fenugreek powder for removal of Congo red dye from the aqueous solution. The flocculation Studies on Congo Red (CR) a hazardous, textile dye onto Fenugreek Powder and its adsorption was analyzed. Fenugreek Powder is Eco-friendly, biodegradable and locally available in the market. The dye adsorption process was performed in different batches at varying pH, dye concentration, adsorbent concentration and contact time to get the best results. The result showed that the maximum removal of dye was 42.4% with 10mg/l of Fenugreek powder at pH 4.


Author(s):  
Doaa Rady ◽  
Mohamed Shaban ◽  
Khaled N. M. Elsayed ◽  
Ahmed Hamd ◽  
N. K. Soliman ◽  
...  

2021 ◽  
Vol 235 ◽  
pp. 251-271
Author(s):  
Soulaiman Iaich ◽  
Youssef Miyah ◽  
Fatima Elazhar ◽  
Salek Lagdali ◽  
Mohamed El-Habacha

2017 ◽  
Vol 76 (10) ◽  
pp. 2719-2732 ◽  
Author(s):  
Nouf F. El-Harby ◽  
Shaimaa M. A. Ibrahim ◽  
Nadia A. Mohamed

Abstract Adsorption capacity of three antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels for Congo red dye removal from its aqueous solution has been investigated for the first time in this work. These hydrogels were prepared by reacting chitosan with various amounts of terephthaloyl diisothiocyanate cross-linker. The effect of the hydrogel structural variations and several dye adsorption processing parameters to achieve the best adsorption capacity were investigated. The hydrogels' structural variations were obtained by varying their terephthaloyl thiourea moieties content. The processing variables included initial concentration of the dye solution, temperature and time of exposure to the dye. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by the pseudo-second-order equation and the Langmuir equation, respectively. On the basis of the Langmuir analysis Congo red dye gave the maximum sorption capacity of 44.248 mg/g. The results obtained confirmed that the sorption phenomena are most likely to be controlled by chemisorption process. The adsorption reaction was endothermic and spontaneous according to the calculated results of adsorption thermodynamics.


2018 ◽  
Vol 47 (28) ◽  
pp. 9466-9473 ◽  
Author(s):  
Wen-Quan Tong ◽  
Wei-Ni Liu ◽  
Jian-Guo Cheng ◽  
Peng-Feng Zhang ◽  
Gao-peng Li ◽  
...  

A stable Cd-MOF with free carboxyl groups in the channels has been synthesized, showing luminescent sensitivity for Fe3+, CrO42− and Cr2O72− ions in aqueous solution, and selective adsorption of Congo red dye.


Sign in / Sign up

Export Citation Format

Share Document