scholarly journals Animal Biopolymer-Plant Biomass Composites: Synergism and Improved Sorption Efficiency

2020 ◽  
Vol 4 (1) ◽  
pp. 15 ◽  
Author(s):  
Mohamed H. Mohamed ◽  
Inimfon A. Udoetok ◽  
Lee D. Wilson

Pelletized biomaterial composites that contain chitosan (C) and torrefied wheat straw (S) at variable weight composition (C:S) were prepared using a facile blending process. The fractional content of the wheat straw was studied to elucidate the role of biomass on the pelletized product and effects of S-content on the physicochemical properties relevant to adsorption phenomena. Chitosan pellets (with and without S) were characterized by spectroscopic (FT-IR and 13C NMR) and thermal (TGA and DSC) techniques to provide support for their respective C:S composition. Confocal microscopy using fluorescein (FL) as a dye probe revealed the presence and an increase in the accessibility of the active sites for the composite pellets according to the S-content (wt %). Equilibrium and kinetic sorption studies using FL and reactive black (RB) dyes revealed an incremental adsorption affinity of the pellets with anionic dyes in variable charge states (FL and RB). The trend for dye adsorption parallels the incremental S-content (wt %) in the composite pellets. This study reports a first-example of a low-cost, facile, and sustainable approach for the valorization of straw and chitosan suitable for sorption-based applications in aqueous media.

RSC Advances ◽  
2016 ◽  
Vol 6 (10) ◽  
pp. 7982-7989 ◽  
Author(s):  
Ali Pourjavadi ◽  
Azardokht Abedin-Moghanaki ◽  
Seyed Amirhossein Nasseri

A magnetic nano-adsorbent was synthesized via the radical polymerization of methyl acrylate on modified Fe3O4 MNPs, followed by amidation of the methyl ester groups using pentaethylenehexamine, to create active sites for adsorption of anionic dyes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2441
Author(s):  
Ahmed Hamd ◽  
Asmaa Ragab Dryaz ◽  
Mohamed Shaban ◽  
Hamad AlMohamadi ◽  
Khulood A. Abu Al-Ola ◽  
...  

Systematic investigations involving laboratory, analytical, and field trials were carried out to obtain the most efficient adsorbent for the removal of congo red (CR) dye from industrial effluent. Modification of the zeolite (Z) by the Acanthophora Spicifera algae (AS; marine algae) was evaluated in terms of adsorption capability of the zeolite to remove CR dye from aqueous solution. The zeolite/algae composite (ZAS) was fabricated using the wet impregnation technique. The AS, Z, and the synthesized ZAS composite were analyzed utilizing various characterization techniques. The newly synthesized ZAS composite has an adsorption capacity that is significantly higher than that of Z and AS, particularly at low CR concentrations. Batch experiments were carried out to explore the effects of different experimental factors, as well as the dye adsorption isotherms and kinetics. Owing to the presence of intermolecular interactions, the computational analysis showed that the adsorption of the CR molecule on zeolite surfaces is exothermic, energetically favorable, and spontaneous. Furthermore, growing the zeolite surface area has no discernible effect on the adsorption energies in all configurations. The ZAS composite may be used as a low-cost substitute adsorbent for the removal of anionic dyes from industrial wastewater at lower dye concentrations, according to the experimental results. Adsorption of CR dye onto Z, AS, and ZAS adsorbents was adequately explained by pseudo-second-order kinetics and the Langmuir isotherm. The sorption mechanism was also evaluated using Weber’s intra-particle diffusion module. Finally, field testing revealed that the newly synthesized adsorbent was 98.0% efficient at extracting dyes from industrial wastewater, proving the foundation of modern eco-friendly materials that aid in the reuse of industrial wastewater.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1164 ◽  
Author(s):  
Sang Yeob Lee ◽  
Ha Eun Shim ◽  
Jung Eun Yang ◽  
Yong Jun Choi ◽  
Jongho Jeon

This paper describes a novel chromatographic method for efficient removal of anionic dyes from aqueous solutions. Chitosan-coated Fe3O4 nanoparticles can easily be immobilized on a dextran gel column. Single elution of Evans Blue (EB) solution to the nanoadsorbent-incorporated columns provides high removal efficiency with a maximum adsorption capacity of 243.9 mg/g. We also investigated the influence of initial concentration and solution pH on the removal efficiency of EB. The electrostatic interaction between the adsorbent surface and negatively charged sulfate groups on EB molecules promotes the efficient adsorption of dyes. The equilibrium data matched well with the Langmuir isotherm model, which indicated monolayer dye adsorption onto the adsorbent surface. To extend the application of the current method, we performed further adsorption experiments using other anionic dyes of different colors (Cy5.5, Acid Yellow 25, Acid Green 25, and Acid Red 1). All of these molecules can efficiently be captured under continuous flow conditions, with higher removal efficiency obtained with more negatively charged dyes. These findings clearly demonstrate that the present approach is a useful method for the removal of anionic dye contaminants in aqueous media by adsorption.


2019 ◽  
Vol 35 (2) ◽  
pp. 766-772
Author(s):  
Zhaksylyk Baumanuly Makhatov ◽  
Bakhytzhan Shilmirzaevich Kedelbayev ◽  
Madina Dzhakashyeva ◽  
Amina Daulbai ◽  
Bibilgul Zaydullayevna Doltayeva ◽  
...  

The processes of acid and enzymatic hydrolysis of wheat straw in the presence of the strain Aspergillus awamori F-RKM 0719 has been studied. Enzymatic hydrolysis is the most promising method of processing plant biomass. When carrying out the enzymatic hydrolysis of cellulosic materials, the yield of sugars reaches less than 20% of the theoretically possible yield. Overcoming the physico-chemical barriers that hamper the availability of cellulose for enzymes is an important issue, the solution of which is directly related to the search for low-cost pre-treatment methods for raw materials. The effectiveness of this process determines the yield of the target product in the process of enzymatic hydrolysis of cellulose and the economic feasibility of the entire technology as a whole.


Author(s):  
Lahoucine Brini ◽  
Abdelghani Hsini ◽  
Yassine Naciri ◽  
Asmae Bouziani ◽  
Zeeshan Ajmal ◽  
...  

Abstract Novel an arginine-modified Heliotrope leaf (Arg@HL) was used as adsorbent for the crystal violet (CV) dye adsorption in a batch process. The physicochemical and morphological composition of Arg@HL were characterized by field-emission-scanning-electron-microscopy (FE-SEM), Fourier transforms infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC). The experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent amount, initial dye concentration, temperature and pH of dye solution. The optimum conditions of adsorption were found on the batch scale as followed: CV concentration of 20 mg·L−1, an amount of 0.75 g·L−1 of the adsorbent, 90 min contact time, 6 pH and 25 °C temperature for Arg@HL. The results confirmed a second-order model explaining the dye crystal violet's adsorption's kinetics by Arg-Heliotrope leaves. The Langmuir model effectively defines the adsorption isotherms. The results revealed that the Arg@HL has the potential to be used as a low-cost adsorbent for the removal of CV dye from aqueous solutions.


Author(s):  
Seroor Atalah Khaleefa Alia ◽  
Dr. Mohammed Ibrahimb ◽  
Hussein Ali Hussein

Adsorption is most commonly applied process for the removal of pollutants such as dyes and heavy metals ions from wastewater. The present work talks about preparing graphenic material attached sand grains called graphene sand composite (GSC) by using ordinary sugar as a carbon source. Physical morphology and chemical composition of GSC was examined by using (FTIR, SEM, EDAX and XRD). Efficiency of GSC in the adsorption of organic dyes from water was investigated using reactive green dye with different parameters such as (ph, temperature, contact time and dose). Adsorption isotherm was also studied and the results showed that the maximum adsorption capacity of dye is 28.98 mg/g. This fast, low-cost process can be used to manufacture commercial filters to treat contaminated water using appropriate engineering designs.


Author(s):  
Christian Frilund ◽  
Esa Kurkela ◽  
Ilkka Hiltunen

AbstractFor the realization of small-scale biomass-to-liquid (BTL) processes, low-cost syngas cleaning remains a major obstacle, and for this reason a simplified gas ultracleaning process is being developed. In this study, a low- to medium-temperature final gas cleaning process based on adsorption and organic solvent-free scrubbing methods was coupled to a pilot-scale staged fixed-bed gasification facility including hot filtration and catalytic reforming steps for extended duration gas cleaning tests for the generation of ultraclean syngas. The final gas cleaning process purified syngas from woody and agricultural biomass origin to a degree suitable for catalytic synthesis. The gas contained up to 3000 ppm of ammonia, 1300 ppm of benzene, 200 ppm of hydrogen sulfide, 10 ppm of carbonyl sulfide, and 5 ppm of hydrogen cyanide. Post-run characterization displayed that the accumulation of impurities on the Cu-based deoxygenation catalyst (TOS 105 h) did not occur, demonstrating that effective main impurity removal was achieved in the first two steps: acidic water scrubbing (AWC) and adsorption by activated carbons (AR). In the final test campaign, a comprehensive multipoint gas analysis confirmed that ammonia was fully removed by the scrubbing step, and benzene and H2S were fully removed by the subsequent activated carbon beds. The activated carbons achieved > 90% removal of up to 100 ppm of COS and 5 ppm of HCN in the syngas. These results provide insights into the adsorption affinity of activated carbons in a complex impurity matrix, which would be arduous to replicate in laboratory conditions.


Cellulose ◽  
2021 ◽  
Author(s):  
Peixin Tang ◽  
Leilah-Marie E. Lockett ◽  
Mengxiao Zhang ◽  
Gang Sun

AbstractA chemical modification of cotton fabrics by 2-diethylaminoethyl chloride (DEAE-Cl) was achieved, and the resulted cotton fabrics demonstrated salt-free dyeing properties with anionic dyes. Nucleophilic property of hydroxyl groups in cotton cellulose was enhanced under alkaline conditions and could react with DEAE-Cl, a chemical possessing both nucleophilic and electrophilic sites. The monolayered DEAE-grafted cotton cellulose could further react with DEAE-Cl to form multiple cationic quaternary ammonium salts (denoted as DEAE@Cotton), which are highly interactive with anionic dye molecules. The strong electrostatic interactions between the DEAE@Cotton and the dyes eliminated the use of inorganic salts in cotton dyeing process. The chemical structure and property of DEAE@Cotton were characterized and compared with untreated cotton. The DEAE@Cotton can be dyed in a salt-free system, and the dye exhaustion was faster than the conventional dyeing method due to the robust electrostatic interactions of the fabrics with anionic dyes. The dyed fabrics demonstrated outstanding color fastness under repeated washing, light exposure, and crocking. The dye adsorption process on DEAE@Cotton follows Langmuir isotherm model (R2 = 0.9667). The mechanism of enhanced dyeability was experimentally proved by treating the fabric with other anionic dyes in a salt-free system, proving the process to be environmentally friendly and cost-effective. Graphic abstract


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


2021 ◽  
Author(s):  
Song-Jeng Isaac Huang ◽  
Adil Muneeb ◽  
Sabhapathy Palani ◽  
Anjaiah Sheelam ◽  
Bayikadi Khasimsaheb ◽  
...  

Developing a non-precious metal electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is desirable for low-cost energy conversion devices. Herein, we designed and developed a new class...


Sign in / Sign up

Export Citation Format

Share Document