scholarly journals Gold Nanorod-Decorated Metallic MoS2 Nanosheets for Synergistic Photothermal and Photodynamic Antibacterial Therapy

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3064
Author(s):  
Sibidou Yougbaré ◽  
Chinmaya Mutalik ◽  
Pei-Feng Chung ◽  
Dyah Ika Krisnawati ◽  
Fajar Rinawati ◽  
...  

Light-responsive nanocomposites have become increasingly attractive in the biomedical field for antibacterial applications. Visible-light-activated metallic molybdenum disulfide nanosheets (1T-MoS2 NSs) and plasmonic gold nanorods (AuNRs) with absorption at a wavelength of 808 nm were synthesized. AuNR nanocomposites decorated onto 1T-MoS2 NSs (MoS2@AuNRs) were successfully prepared by electrostatic adsorption for phototherapy applications. Based on the photothermal effect, the solution temperature of the MoS2@AuNR nanocomposites increased from 25 to 66.7 °C after 808 nm near-infrared (NIR) laser irradiation for 10 min. For the photodynamic effect, the MoS2@AuNR nanocomposites generated reactive oxygen species (ROS) under visible light irradiation. Photothermal therapy and photodynamic therapy of MoS2@AuNRs were confirmed against E. coli by agar plate counts. Most importantly, the combination of photothermal therapy and photodynamic therapy from the MoS2@AuNR nanocomposites revealed higher antibacterial activity than photothermal or photodynamic therapy alone. The light-activated MoS2@AuNR nanocomposites exhibited a remarkable synergistic effect of photothermal therapy and photodynamic therapy, which provides an alternative approach to fight bacterial infections.

2020 ◽  
Vol 8 (16) ◽  
pp. 4616-4625 ◽  
Author(s):  
K. Bilici ◽  
N. Atac ◽  
A. Muti ◽  
I. Baylam ◽  
O. Dogan ◽  
...  

Antimicrobial photodynamic therapy (aPDT) and antimicrobial photothermal therapy (aPTT) are promising local and effective alternative therapies for antibiotic resistant bacterial infections and biofilms.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


2018 ◽  
Vol 6 (4) ◽  
pp. 746-765 ◽  
Author(s):  
Houjuan Zhu ◽  
Penghui Cheng ◽  
Peng Chen ◽  
Kanyi Pu

Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have gained considerable attention due to their high tumor ablation efficiency, excellent spatial resolution and minimal side effects on normal tissue.


2021 ◽  
Author(s):  
Xiaozhen Li ◽  
Fang Fang ◽  
Bo Sun ◽  
Chao YIN ◽  
Jihua Tan ◽  
...  

Photodynamic therapy (PDT) synergized photothermal therapy (PTT) shows superior clinical application prospect than single PDT or PTT. On the other hand, multimodal imaging can delineate comprehensive information of lesion site...


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Hadiyah N. Green ◽  
Dmitry V. Martyshkin ◽  
Cynthia M. Rodenburg ◽  
Eben L. Rosenthal ◽  
Sergey B. Mirov

The mastery of active tumor targeting is a great challenge in near infrared photothermal therapy (NIRPTT). To improve efficiency for targeted treatment of malignant tumors, we modify the technique of conjugating gold nanoparticles to tumor-specific antibodies. Polyethylene glycol-coated (PEGylated) gold nanorods (GNRs) were fabricated and conjugated to an anti-EGFR antibody. We characterized the conjugation efficiency of the GNRs by comparing the efficiency of antibody binding and the photothermal effect of the GNRs before and after conjugation. We demonstrate that the binding efficiency of the antibodies conjugated to the PEGylated GNRs is comparable to the binding efficiency of the unmodified antibodies and 33.9% greater than PEGylated antibody-GNR conjugates as reported by Liao and Hafner (2005). In addition, cell death by NIRPTT was sufficient to kill nearly 90% of tumor cells, which is comparable to NIRPTT with GNRs alone confirming that NIRPTT using GNRs is not compromised by conjugation of GNRs to antibodies.


2020 ◽  
Vol 11 (26) ◽  
pp. 6701-6708 ◽  
Author(s):  
Juan Tang ◽  
Lushun Wang ◽  
Axel Loredo ◽  
Carson Cole ◽  
Han Xiao

Thio-based photosensitizer: a general strategy for preparing visible/NIR light absorbing heavy-atom-free photosensitizers was developed by performing a simple sulfur-for-oxygen atom substitution within existing fluorescent molecules.


2020 ◽  
Vol 13 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Lu Cheng ◽  
Nuo Yu ◽  
Yan Zhang ◽  
Zhun Shi ◽  
Haifeng Wang ◽  
...  

The development of photocatalysts with wide UV-Vis-near-infrared (NIR) photoabsorption has received tremendous interest for utilizing sunlight efficiently. In this work, Cu2(OH)PO4 superstructures are prepared by a simple hydrothermal route, and they have strong bandgap absorption in UV-Visible region and a distinctive plasmon resonance absorption in NIR region. Under the synergetic illumination of visible light and 980[Formula: see text]nm laser (3.0[Formula: see text]W[Formula: see text]cm[Formula: see text]), Cu2(OH)PO4 superstructures can degrade 89.2% MB with the elevated temperature ([Formula: see text]51∘C) of solution, which is higher than that from visible light group (50.0%), laser group (16.4%), and visible-light/exterior-heating group (62.5%, same temperature at [Formula: see text]51.0∘C). These facts reveal that Cu2(OH)PO4 superstructures exhibit NIR-laser enhanced photocatalytic activity, which not only comes from the photothermal effect-induced temperature elevation, but also mainly results from the increased production of photogenerated electron-hole pairs by NIR-laser. Therefore, Cu2(OH)PO4 superstructures can act as efficient photocatalyst with NIR-laser enhanced photocatalytic activity.


Author(s):  
Mack Biyiklioglu

Photodynamic therapy and photothermal therapy as non-invasive treatment methods have been receiving more and more attention. The report shows that zinc(II) phthalocyanine (Pc2) modified by perphenazine forms nanoparticles with a particle size of 110 nm by [Formula: see text]–[Formula: see text] stacking in water. It has good photothermal effect when illuminated by 680 nm laser in aqueous solution. In addition, its ability to produce active oxygen is 2.3-fold that of methylene blue, so Pc2 also has a good photodynamic effect. In vivo fluorescence shows that Pc2 has a good targeting effect on tumors. Under the synergistic effect of photodynamic therapy and photothermal therapy, Pc2 has good tumor inhibition efficiency.


Sign in / Sign up

Export Citation Format

Share Document