scholarly journals Experimental Investigation and Numerical Simulation for Corrosion Rate of Amorphous/Nano-Crystalline Coating Influenced by Temperatures

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3298
Author(s):  
Hamid Al-Abboodi ◽  
Huiqing Fan ◽  
Ibtihal A. Mahmood ◽  
Mohammed Al-Bahrani

A high-velocity oxygen fuel (HVOF) system was employed to prepare a Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 amorphous coating on mild steel. The electrochemical behavior of the resultant coatings, namely as-sprayed coating and vacuum heat-treated coating (at 650 °C and 800 °C), were investigated in a 3.5% NaCl solution at variable temperatures using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, optical microscopy (OM), and XRD diffraction. Moreover, COMSOL Multiphysics version 5.5 software were employed for predicting the galvanic corrosion of amorphous material immersed in an aqueous NaCl solution, using the software finite element kit. The experiments demonstrated that the coatings’ pitting resistance was significantly affected by temperature. The results also showed that temperature affected the pitting corrosion rate and changed the shape of the pits. However, the changes were not as extreme as those observed in stainless steel. Furthermore, there was no significant difference between the as-sprayed coating and the vacuum-heat-treated coating at 650 °C. At low NaCl concentrations at and temperatures below the critical pitting temperature, the resulting pits were significantly small with a hemisphere-like. By contrast, at a higher NaCl concentration at 70 °C, particularly in the case of heating at 650 °C, the pits appearing on the Fe-based amorphous coating were vast and sometimes featured a lacy cover.

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1552
Author(s):  
Chenxi Yang ◽  
Nikhil Gupta ◽  
Hanlin Ding ◽  
Chongchen Xiang

The improvement in corrosion resistance of WE43 was well realized by heat treatment. To study the influence of microstructure on the corrosion behavior of WE43 in as-cast and heat-treated conditions, an immersion test was employed with as-cast and heat-treated samples in the 3.5% NaCl solution. The corrosion rate and change of morphology were recorded and the corrosion behavior was further investigated by scanning electron microscopy (SEM). The results indicated that the corrosion rate of the WE43 alloy decreased after heat treatment. It was observed that the eutectic gradually damages the protective film on the surface of the as-cast WE43 in the process of corrosion, which further increases the corrosion rate. The Zr-rich phase formed a domed structure resulting in the adjacent area being further corroded. The Y-rich phase has little effect on the corrosion reaction.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Atria Pradityana ◽  
Sulistijono ◽  
Abdullah Shahab ◽  
Lukman Noerochim ◽  
Diah Susanti

Inhibitor is a substance that is added to the corrosive media to inhibit corrosion rate. Organic inhibitors are preferred to inorganic ones since they are environmentally friendly. One of the organic compounds which is rarely reported as a corrosion inhibitor isMyrmecodia Pendans. The organic compounds can be adsorbed on the metal surface and block the active surface to reduce the rate of corrosion. In this study, the used pipe was carbon steel API 5L Grade B with 3.5% NaCl solution as the corrosion medium. The objective of this research was to analyze the inhibition mechanismMyrmecodia Pendanstowards carbon steel in a corrosion medium. Concentration variations of extractMyrmecodia Pendanswere 0–500 ppm. Fourier Transform Infrared (FTIR) was used for chemical characterization ofMyrmecodia Pendans. Polarization and Electrochemical Impedance Spectroscopy (EIS) were used to measure the corrosion rate and behaviour. From the electrochemical measurements, it was found that the addition of 400 mg/L inhibitor gave the highest inhibition efficiency.Myrmecodia Pendansacted as a corrosion inhibitor by forming a thin layer on the metal surface.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jan-Ervin C. Guerrero ◽  
Drexel H. Camacho ◽  
Omid Mokhtari ◽  
Hiroshi Nishikawa

The corrosion and leaching behaviour of a new ternary Sn-0.7Cu-0.05Ni alloy in 3.5 wt.% NaCl solution is reported herein. Potentiodynamic polarization measurements show that Sn-0.7Cu-0.05Ni has the highest corrosion rate. Results of the 30-day Sn leaching measurement show that Sn-Cu-Ni joint has slight decrease attributed to the formation of thin passivation film after 15 days. The leaching amounts of Sn are observed to be higher in solder joint than in solder alloy due to the galvanic corrosion happening on the surface. EDS and XRD results of the corroded surface confirm that the corroded product is made up of oxides of tin.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
A. Hossain ◽  
F. Gulshan ◽  
A. S. W. Kurny

The corrosion behaviour of heat treated Al-6Si-0.5Mg-xCu (x=0.5, 1, 2, and 4 wt%) alloys in 0.1 M NaCl solution was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization curves reveal that 2 wt% Cu (Alloy-4) and 4 wt% Cu (Alloy-5) content alloys are more prone to corrosion than the other alloys investigated. But the EIS test results showed that charge transfer resistance (Rct) increases with increasing Cu content into Al-6Si-0.5Mg. Maximum charge transfer resistance (Rct) is reported with the addition of 2 wt% Cu and minimumRctvalue is for 4 wt% Cu content Al-6Si-0.5Mg alloy. Due to additions of Cu into Al-6Si-0.5Mg alloy, the magnitudes of open circuit potential (OCP), corrosion potential (Ecorr), and pitting corrosion potential (Epit) in NaCl solution were shifted to the more noble direction.


2011 ◽  
Vol 383-390 ◽  
pp. 5418-5425 ◽  
Author(s):  
Andi Rustandi ◽  
Johny W. Soedarsono ◽  
Bambang Suharno

Flow induced corrosion due to the presence of turbulent flow often occurs which causes severe internal thinning and promotes premature leakage. In practice, the common method for controlling such internal high corrosion rate is chemical injection using corrosion inhibitor such as amine based which utilizing adsorption or film forming mechanism. Unfortunately, the protection performance of such inhibitor might be less effective due to turbulent flow induced. The aim of this work is to study the use of mixture of piper betle and green tea as an alternative of green corrosion inhibitor (eco-friendly) to reduce the corrosion rate of API X-52 steel in aerated 3.5 % NaCl solution in turbulent flow condition whether high inhibitor efficiency can be achieved. The method of corrosion rate measurements was conducted using electrochemical polarization equipped with CMS100-Gamry Instruments and DC105 software as well as Rotating Cylinder Electrode (RCE) simulation. The mechanism of inhibition was also investigated using Electrochemical Impedance Spectroscopy (EIS) method with EIS300 software. The results showed that the addition of mixture of 1000 ppm piper betle and 4000 ppm green tea extracts with Reynold number ranging from 0 up to 30000 reduced the corrosion rates significantly with its approximately 90 % inhibitor efficiencies achieved. In addition, EIS spectra showed that in the absence of corrosion inhibitor, the Warburg impedance (diffusion controlled) was significantly attributed to the overall impedance but in the presence of corrosion inhibitor, capacitive impedance (charge transfer controlled) was mainly attributed to the overall impedance.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 880
Author(s):  
Ying Hu ◽  
Long Xin ◽  
Tingguang Liu ◽  
Yonghao Lu

The corrosion behavior of oilfield used L245N standard steel was tested in simulated oilfield solution by dynamic high-temperature autoclave. The corrosion products were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Electrochemical impedance spectroscopy (EIS) respectively. In addition, the corrosion rates and surface morphological characteristics of the steels after different exposure times were studied. The results showed that the corrosion rate decreased sharply and then increased with time in the high salinity flow solution, which was related to the formation of corrosion scale and the remaining cementite within it. At the beginning of the exposure time, the formed corrosion scale became thicker, resulting in a significant decrease of the corrosion rate. While with increasing time, on the one hand, the increased remaining cementite within corrosion scale facilitated the corrosion by the galvanic corrosion between the remaining cementite and the ferrite within the metal. On the other hand, the protective effect of corrosion scale formed on the remaining cementite skeleton declined due to the formation of large amounts of FexCa1−xCO3, which also promoted the corrosion rate of the steels, both these ways contributed to a slow increase of corrosion rate.


2013 ◽  
Vol 749 ◽  
pp. 606-610 ◽  
Author(s):  
Zhen Pu ◽  
Qing Fu Wang ◽  
Mao Bin Shuai ◽  
Ding Mu Lang

Self-corrosion and galvanic corrosion of depleted uranium and 45 steel were studied by electrochemical analyzing technologies. Corrosion products were analyzed by Energy-dispersive spectroscopy (EDS). The results showed that, in the 3.5wt.%NaCl solution, DU acted as anode with an accelerated corrosion rate, and 45 steel acted as cathode during the process of galvanic corrosion for DU/45 couple. The galvanic potential and current density of the DU/45 couple were around-770mV and 12.5μA/cm-2, respectively.


2007 ◽  
Vol 546-549 ◽  
pp. 1805-1808
Author(s):  
Li Qun Zhu ◽  
Yan Bin Du ◽  
Zhen Xue ◽  
Ying Xu Li

A tri-layer amorphous Ni-P alloy coating was prepared in the same bath by changing the temperatures and currents, followed by heat treament. We studied the behavior of corrosion-resistance of the tri-layer coating before and after heat-treatment at 360°C for different time in the 5% NaCl solution. The result showed that: the tri-layer amorphous Ni-P coating has the excellent performance of anti-corrosion compare with single electroless or electrodeposited Ni-P amorphous coating. The performance of anti-corrosion of the coating was improved by controlling the coating’s structure and the role of electrochemical protection. After being heat-treated at 360°C for 1 hour ,the coating’s structure changed from amorphous to crystalloid and the corrosion resistance of the heat-treated coatings was higher than as-plated tri-layer Ni-P coating.


Author(s):  
Toshiyasu Nishimura

In order to examine the application of Mo-Fe-Ti alloy for overpak, the corrosion resistance of heat-treated its alloys was investigated by Electrochemical impedance spectroscopy (EIS), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM) and Energy dispersive X-ray analysis (EDAX). Considering the welding, the sample subjected to solution heat treatment (ST) had a single β phase and samples subjected to aging heat treatment at 600–700°C had a-phase precipitation in b-phase. EIS results showed that the corrosion resistance of the aging heat-treated samples was lower than that of the ST sample, but much higher than that of pure Ti in long term immersion test in 10% NaCl solution of pH 0.5 at 97°C which simulating the crevice solution. Laser micrographs of the aging heat-treated samples indicated that a-phase at the grain boundary and in the grain was selectively corroded and caused selective dissolution in NaCl solution. The results of TEM combined with EDAX analyses showed that there were b-phase matrix composed of 2.7 wt% of Mo and 4.8wt% of Fe, and a-phase composed of 0.7 wt% of Mo and 0.1 wt% of Fe in sample aged at 600°C. Thus, Mo-poor a-phase was selectively dissolved in in 10% NaCl solution of pH 0.5 at 97°C. In a result, the ST sample of only b-phase showed the highest resistance, and aging heat-treated samples containing a-phase (0.7 wt% of Mo) showed higher values than pure Ti in the corrosion test. Addition of Fe did not decrease the resistance of alloy in the case of ST condition. Moreover, as Fe was involved in b-phase with Mo which increased remarkably the corrosion resistance, the addition of Fe did not decrease the corrosion resistance of aging heat-treated Mo-Fe-Ti alloy. Finally, it was concluded that Mo-Fe-Ti alloy had excellent resistance for overpack in simulating underground environment.


2013 ◽  
Vol 750-752 ◽  
pp. 1137-1140
Author(s):  
Zu Xiao Yu ◽  
Shi Xiong Hao ◽  
Qing Shan Fu

To improve corrosion rates and activation properties of AZ91 magnesium alloy anode, effects of additives (propargyl alcohol) on electrochemical behaviors of AZ91 magnesium alloy in 3.5% NaCl solution have been examined by studying corrosion rate, polarization, open circuit potential (Eocp) and transfer resistance values (Rt) of electrochemical impedance spectroscopy(EIS). The results show that propargyl alcohol not only decreases corrosion rate of AZ91 magnesium alloy anode, corrosion-inhibition ratio is 64.6%, but also increases activation properties of AZ91 when 1.0 % propargyl alcohol added into 3.5% NaCl solution. The current density of AZ91 reaches 9.46 mA.cm-2 at-1.35V. Its active potential (Eact ) is-1.527 V , and Eocp is-1.556 V.


Sign in / Sign up

Export Citation Format

Share Document