scholarly journals The Effect of TiO2 Nanoparticles on the Composition and Ultrastructure of Wheat

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3413
Author(s):  
Maria-Loredana Soran ◽  
Ildiko Lung ◽  
Ocsana Opriș ◽  
Otilia Culicov ◽  
Alexandra Ciorîță ◽  
...  

The present work aims to follow the influence of TiO2 nanoparticles (TiO2 NPs) on bioactive compounds, the elemental content of wheat, and on wheat leaves’ ultrastructure. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). The concentration of phenolic compounds, assimilation pigments, antioxidant capacity, elemental content, as well as the ultrastructural changes that may occur in the wheat plants grown in the presence or absence of TiO2 NPs were evaluated. In plants grown in the presence of TiO2 NPs, the amount of assimilating pigments and total polyphenols decreased compared to the control sample, while the antioxidant activity of plants grown in amended soil was higher than those grown in control soil. Following ultrastructural analysis, no significant changes were observed in the leaves of TiO2-treated plants. Application of TiO2 NP to soil caused a significant reaction of the plant to stress conditions. This was revealed by the increase of antioxidant capacity and the decrease of chlorophyll, total polyphenols, and carotenoids. Besides, the application of TiO2 NP led to significant positive (K, Zn, Br, and Mo) and negative (Na, Mn, Fe, As, Sr, Sb, and Ba) variation of content.

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 165
Author(s):  
Sandip Madhukar Deshmukh ◽  
Mohaseen S. Tamboli ◽  
Hamid Shaikh ◽  
Santosh B. Babar ◽  
Dipak P. Hiwarale ◽  
...  

In the present work, we have reported a facile and large-scale synthesis of TiO2 nanoparticles (NPs) through urea-assisted thermal decomposition of titanium oxysulphate. We have successfully synthesized TiO2 NPs by using this effective route with different weight ratios of titanium oxysulphate: urea. The structures and properties of TiO2 NPs were confirmed by scanning electron microscope) (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), ultra violet–visible spectroscopy (UV-vis), and photoluminescence (Pl) techniques. XRD demonstrated that TiO2 NPs holds of anatase crystal phase with crystallizing size 14–19 nm even after heating at 600 °C. TGA, SEM, and TEM images reveal urea’s role, which controls the size, morphology, and aggregation of TiO2 NPs during the thermal decomposition. These TiO2 NPs were employed for photodegradation of Methyl Orange (MO) in the presence of ultraviolet (UV) radiation. An interesting find was that the TiO2 NPs exhibited better photocatalytic activity and excellent recycling stability over several photodegradation cycles. Furthermore, the present method has a great perspective to be used as an efficient method for large-scale synthesis of TiO2 NPs.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thuy-Chinh Nguyen ◽  
Tien-Dung Nguyen ◽  
Duc-Toan Vu ◽  
Duc-Phuong Dinh ◽  
Anh-Hiep Nguyen ◽  
...  

This paper presents some characteristics, properties, and morphology of TiO2 nanoparticles (nano-TiO2) modified with various contents of 3-(trimethoxysilyl)propyl methacrylate (TMSPM) coupling agent. The treatment process was carried out in ethanol solvent at 50oC using ammonia as a catalyst for hydrolysis reaction of silane to silanol. Infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, ultraviolet-visible spectroscopy, and X-ray diffraction methods were used for determination of the characteristics, properties of nano-TiO2 before and after treatment. In addition, the contact angle and grafting efficiency of TMSPM on the surface of TiO2 nanoparticles was also evaluated. The obtained results confirmed that TMSPM was grafted to the TiO2 nanoparticles, the agglomeration of nano-TiO2 was decreased, and surface of TiO2 nanoparticles became hydrophobic after modification by TMSPM.


2018 ◽  
Vol 63 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Harish Phattepur ◽  
Gowrishankar Bychapur Siddaiah ◽  
Nagaraju Ganganagappa

A sol-gel method was employed to synthesise pure titanium dioxide (TiO2) and surfactant assisted TiO2 nanoparticles (NPs). The effect of novel surfactant viz., Lauryl lactyl lactate on photocatalytic properties of TiO2 was studied. TiO2 NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis Diffuse Reflectance spectra (DRS), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Thermo gravimetric analysis (TGA), and Brunauer – Emmet - Teller (BET) surface area. Anatase phase of TiO2 was confirmed by X-Ray diffraction pattern and the crystallite size was between 9–19 nm. Addition of surfactant improved the BET surface area, surface defects, while the agglomeration of particles was reduced. DRS results revealed that the addition of surfactant to TiO2 sol induced a red shift of the absorption edge which resulted in the reduction of band gap from 3.23 to 3.21 eV. These physicochemical properties of TiO2 NPs were correlated with photocatalytic degradation of phenol. About 92% of phenol degradation was observed for surfactant assisted TiO2 NPs (SA-TiO2). Salicylic acid and caffeine were also degraded using SA-TiO2 NPs.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2010 ◽  
Author(s):  
Guangyu Zhang ◽  
Dao Wang ◽  
Jiawei Yan ◽  
Yao Xiao ◽  
Wenyan Gu ◽  
...  

Herein, the amino-capped TiO2 nanoparticles were synthesized using tetrabutyl titanate and amino polymers by a two-step sol-gel and hydrothermal method technique for the fabrication of functional cotton fabric. The prepared TiO2 nanoparticles and the treated cotton fabric were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), field emission scanning electron microcopy (FE-SEM) photocatalytic and antibacterial measurement. The results indicate the typical characteristic anatase form of the amino-capped TiO2 NPs with an average crystallite size of 14.9 nm. The treated cotton fabrics exhibit excellent antibacterial property and good photocatalytic degradation of methylene blue.


2017 ◽  
Vol 748 ◽  
pp. 295-300 ◽  
Author(s):  
Rui Shuang Jiang ◽  
Bao Min Wang

In this work, two type graphene were dispersed in aqueous solution via sonication, and graphene nanoplatelets (GP) and graphene oxide (GO) were characterized by means of ultraviolet visible spectroscopy (UV-vis), X-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, the effects of different graphene (GP and GO) on mechanical properties and microstructure of cement-based materials were investigated via filed emission scanning electron microscopy (FESEM). The results suggested that the incorporation of GP and GO both improved the flexural and compressive strength of cement, and the GP had a more prominent impact on the strengths of cement, compared with GO. The flexural and compressive strength of cement increased up to 23.5% and 7.5% with 0.05 wt% GP, respectively. FESEM analysis indicated that the microstructure of GP-cement paste was similar to that of control sample without graphene, whereas, a few flower-like crystals were generated in GO-cement paste. This work could provide a new understanding for further researches of graphene-cement composites.


e-Polymers ◽  
2016 ◽  
Vol 16 (3) ◽  
pp. 177-180 ◽  
Author(s):  
Zheng Peng ◽  
Hong Li ◽  
Xinwu Ba ◽  
Junchai Zhao ◽  
Xiuguo Sun ◽  
...  

AbstractIntramolecular nanocavities in polyamidoamine (PAMAM) are usually used as a good template to synthesize nanoparticles. In this paper, TiO2 nanoparticles were prepared successfully by the interspaces of the hydrogen network between PAMAM. The possible mechanism was that PAMAM could form the steady microspheres with many interspaces in ammonia aqueous solution at pH=10. The interspaces of the hydrogen network could act as the template for preparing TiO2 nanoparticles. The results were proved by transmission electron microscopy (TEM) and X-ray diffraction (XRD).


2017 ◽  
Vol 3 (1) ◽  
pp. 20-26
Author(s):  
Atik Setyani ◽  
Emas Agus Prastyo Wibowo

Nanotubes received great attention because it has a high surface area. In this study, TiO2 nanotubes fabricated via hydrothermal method from  synthesis of TiO2 nanoparticles via sol-gel method. Catalysts that have been synthesized later in the characterization by X-Ray Diffraction (XRD) to obtain the crystal size and crystallinity. Crystal size of TiO2 nanoparticles at a temperature of 450C is 13.78 nm. Then characterized by Transmission Electron Microscopy (TEM) to look at the formation of nanotubes. Characterization of TiO2 nanotubes with TEM shows that the structure of the tubes had already been formed TNTs although the growth has not been perfect. It can be seen from the structure TNTs who tend to be short and yet so irregular.DOI: http://dx.doi.org/10.15408/jkv.v0i0.5036  


2022 ◽  
Vol 12 (2) ◽  
pp. 555
Author(s):  
Agnieszka Kita ◽  
Martyna Kołodziejczyk ◽  
Anna Michalska-Ciechanowska ◽  
Jessica Brzezowska ◽  
Katarzyna Wicha-Komsta ◽  
...  

The aim of this study was to determine the effect of blanching and frying on selected properties of potato crisps of yellow- and purple-fleshed cultivars. The material used was yellow flesh cv. Ismena and purple flesh cv. Provita. Potato slices were blanched (1–5 min at 80–90 °C) and then fried (155–175 °C). The control sample was comprised of crisps that were not blanched. The fat content and color parameters were determined in crisps, while in defatted samples, the following were determined: the content of total polyphenols; antioxidant capacity, measured by the ability to scavenge the ABTS•+ radical cations (TEAC ABTS) and by the FRAP method; and the level of fluorescent intermediary compounds (FICs) and browning index (BI), as indicators of the progress of the Maillard reaction. The content of kynurenic acid (KYNA) was examined in the raw material, in slices, in the water after blanching and in the crisps. Blanching affected the fat absorption, with time being more critical than temperature. The color of crisps from yellow flesh potatoes after blanching lightened, while the color in the purple samples darkened. The content of total polyphenols was higher in purple crisps. Increasing the temperature and shortening the time of blanching increased the polyphenol content and the antioxidant capacity. Blanching decreased the level of FICs, while frying increased FICs. Higher BI values characterized the crisps from cv. Provita. Blanching reduced BI values by 50%, while frying at highest temperature increased these values. The content of KYNA in purple potatoes was almost three times higher than in yellow ones. Blanching and frying decreased the KYNA content in potatoes and fried crisps.


2020 ◽  
Vol 10 (16) ◽  
pp. 5603
Author(s):  
Agnieszka Kita ◽  
Joanna Nowak ◽  
Anna Michalska-Ciechanowska

The aim of the study was to evaluate the physical, chemical and sensory properties of novel snacks gained from pellets composed of Jerusalem artichoke flour with the addition of cranberry, chokeberry and blackcurrant juice powders (after extrusion) fried or microwaved during 5-week storage. In ready-to-eat snacks stored in climatic chamber, the moisture content, texture, colour, total polyphenols content and antioxidant capacity, while in fat fraction of fried snacks—peroxide and acid values were examined. Overall sensory attributes were monitored as well. It was indicated that an addition of fruit powders increased the content of total polyphenols (on average by 40%) and improved the antioxidant capacity of snacks obtained. The products with fruit powders exhibited more attractive colour, while their texture was harder (when cranberry and chokeberry powders were added) in comparison with the control sample. Snacks with fruit powders addition showed better storage stability, what was especially important in the case of fried snacks where oxidative deterioration is most significant. The best effect was observed when chokeberry or black currant powders were used as additives. Replacing frying by microwaving as expansion method allowed to obtain snacks with acceptable sensory attributes and good quality during storage.


2020 ◽  
Vol 6 (3) ◽  
pp. 911-914
Author(s):  
Mohammed Alsawat

Gadolinium-doped TiO2 NPs, namely TiO2-Gd1.0 and TiO2-Gd6.0 have been synthesized using two different atomic concentrations of gadolinium(III) nitrate hexahydrate in presence of titanium(IV) tert-butoxide as a titanium precursor and dimethyl sulfoxide as a solvent. The structure and morphology of these NPs have been characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric-differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The two synthesized TiO2-Gd1.0 and TiO2-Gd6.0 were tested as electrocatalysts for hydrogen evolution reaction (HER) in an acidic electrolyte (0.5 M H2SO4) based on linear sweep voltammetry (LSV) measurements. LSV data were fitted to Tafel equation and the various electrochemical parameters describing the HER kinetics were evaluated and discussed. Results demonstrate that the kinetics of the HER on the surface of TiO2 NPs significantly enhanced upon doping it with Gd3+, proportionally to the atomic concentration of the Gd3+ cations in the TiO2 NPs.


Sign in / Sign up

Export Citation Format

Share Document