scholarly journals Improvement of Nanostructured Polythiophene Film Uniformity Using a Cruciform Electrode and Substrate Rotation in Atmospheric Pressure Plasma Polymerization

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Jae Young Kim ◽  
Hyo Jun Jang ◽  
Gyu Tae Bae ◽  
Choon-Sang Park ◽  
Eun Young Jung ◽  
...  

In atmospheric pressure (AP) plasma polymerization, increasing the effective volume of the plasma medium by expanding the plasma-generating region within the plasma reactor is considered a simple method to create regular and uniform polymer films. Here, we propose a newly designed AP plasma reactor with a cruciform wire electrode that can expand the discharge volume. Based on the plasma vessel configuration, which consists of a wide tube and a substrate stand, two tungsten wires crossed at 90 degrees are used as a common powered electrode in consideration of two-dimensional spatial expansion. In the wire electrode, which is partially covered by a glass capillary, discharge occurs at the boundary where the capillary terminates, so that the discharge region is divided into fourths along the cruciform electrode and the discharge volume can successfully expand. It is confirmed that although a discharge imbalance in the four regions of the AP plasma reactor can adversely affect the uniformity of the polymerized, nanostructured polymer film, rotating the substrate using a turntable can significantly improve the film uniformity. With this AP plasma reactor, nanostructured polythiophene (PTh) films are synthesized and the morphology and chemical properties of the PTh nanostructure, as well as the PTh-film uniformity and electrical properties, are investigated in detail.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1278
Author(s):  
Jae Young Kim ◽  
Shahzad Iqbal ◽  
Hyo Jun Jang ◽  
Eun Young Jung ◽  
Gyu Tae Bae ◽  
...  

The use of low-voltage-driven plasma in atmospheric pressure (AP) plasma polymerization is considered as a simple approach to reducing the reactivity of the monomer fragments in order to prevent excessive cross-linking, which would have a negative effect on the structural properties of the polymerized thin films. In this study, AP-plasma polymerization can be processed at low voltage by an AP-plasma reactor with a wire electrode configuration. A bare tungsten wire is used as a powered electrode to initiate discharge in the plasma area (defined as the area between the wide glass tube and the substrate stand), thus allowing plasma polymerization to proceed at a lower voltage compared to other AP-plasma reactors with dielectric barriers. Thus, transparent polyaniline (PANI) films are successfully synthesized. The surface morphology, roughness, and film thickness of the PANI films are characterized by field emission scanning electron microscopy and atomic force microscopy. Thus, the surface of the polymerized film is shown to be homogenous, smooth, and flat, with a low surface roughness of 1 nm. In addition, the structure and chemical properties of the PANI films are investigated by Fourier transform infrared spectroscopy, thus revealing an improvement in the degree of polymerization, even though the process was performed at low voltage.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2315
Author(s):  
Jae-Young Kim ◽  
Hyo-Jun Jang ◽  
Eunyoung Jung ◽  
Gyutae Bae ◽  
Soonwon Lee ◽  
...  

The morphological and chemical properties of polyaniline (PANI) nanocomposite films after adding small amounts of auxiliary gases such as argon, nitrogen, and oxygen during atmospheric pressure (AP) plasma polymerization are investigated in detail. A separate gas-supply line for applying an auxiliary gas is added to the AP plasma polymerization system to avoid plasma instability due to the addition of auxiliary gas during polymerization. A small amount of neutral gas species in the plasma medium can reduce the reactivity of monomers hyperactivated by high plasma energy and prevent excessive crosslinking, thereby obtaining a uniform and regular PANI nanocomposite film. The addition of small amounts of argon or nitrogen during polymerization significantly improves the uniformity and regularity of PANI nanocomposite films, whereas the addition of oxygen weakens them. In particular, the PANI film synthesized by adding a small amount of nitrogen has the best initial electrical resistance and resistance changing behavior with time after the ex situ iodine (I2)-doping process compared with other auxiliary gases. In addition, it is experimentally demonstrated that the electrical conductivity of the ex situ I2-doped PANI film can be preserved for a long time by isolating it from the atmosphere.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 418
Author(s):  
Jae Yong Kim ◽  
Shahzad Iqbal ◽  
Hyo Jun Jang ◽  
Eun Young Jung ◽  
Gyu Tae Bae ◽  
...  

In-situ iodine (I2)-doped atmospheric pressure (AP) plasma polymerization is proposed, based on a newly designed AP plasma reactor with a single wire electrode that enables low-voltage-driven plasma polymerization. The proposed AP plasma reactor can proceed plasma polymerization at low voltage levels, thereby enabling an effective in-situ I2 doping process by maintaining a stable glow discharge state even if the applied voltage increases due to the use of a discharge gas containing a large amount of monomer vapors and doping materials. The results of field-emission scanning electron microscopy (FE-SEM) and Fourier transformation infrared spectroscopy (FT-IR) show that the polyaniline (PANI) films are successfully deposited on the silicon (Si) substrates, and that the crosslinking pattern of the synthesized nanoparticles is predominantly vertically aligned. In addition, the in-situ I2-doped PANI film fabricated by the proposed AP plasma reactor exhibits excellent electrical resistance without electrical aging behavior. The developed AP plasma reactor proposed in this study is more advantageous for the polymerization and in-situ I2 doping of conductive polymer films than the existing AP plasma reactor with a dielectric barrier.


Author(s):  
Henryka Danuta Stryczewska ◽  
Tomasz Jakubowski ◽  
Stanisław Kalisiak ◽  
Tomasz Giżewski ◽  
Joanna Pawłat

AbstractRecently, many different plasma sources are being investigated for exhaust gases treatment, odor abatement, VOC removal, soil conditioning, surface decontamination or tissue disinfection and sterilization. Among many different plasma reactors investigated in laboratories, gliding arc discharges (GAD), dielectric barrier discharges (DBD), pulsed discharges (PD), atmospheric pressure glow discharges (APGD) and atmospheric pressure plasma jets (APPJ) seem to be the most promising for high pressure low temperature applications. They can be designed as multi-electrodes’ high power system that can be used in environment protection processes, like decontamination of large surfaces and treatment of large volume of polluted gases, as well as small size and low power devices for biomedical applications, like plasma healing, disinfection and sterilization. Paper presents review of power supply systems for cold plasma reactors. Dielectric Barrier Discharge (DBD), Gliding Arc Discharge (GAD) and atmospheric pressure plasma jet (APPJ) reactors with their supply systems have been discussed from the point view of their characteristics, possibility to control power to the discharge and efficiency. Taking into account the plasma reactor characteristics and nature (nonlinear resistive and/or capacitive) different solutions of power suppliers have been presented: transformer type, AC/DC/AC inverter, RF-frequency system and frequency resonant inverter.


2019 ◽  
Vol 7 ◽  
pp. 1-9 ◽  
Author(s):  
Bhesh Bahadur Thapa ◽  
Raju Bhai Tyata

This paper reports the electrical behaviors of atmospheric pressure plasma reactor with Dielectric Barrier Discharge (DBD) in air medium. The DBD discharge was generated in air at atmospheric pressure using Disc Electrode Geometry (DEG) reactor powered by ac voltage (0-7kV) at a frequency of 24kHz. The glass plates of thickness 1.0mm and 3.0mm were used as dielectric. The current-voltage characteristics were studied for two air gap of 2.0mm and 3.0mm by varying the applied voltages. The numbers of filamentary micro discharges were found as increased in each half cycle with increase in power. The observations of Lissajous figure of applied voltage versus electric current was used for measuring energy deposited by discharge and also compared with calculated value. Lissajous figures clearly show that the energy deposited by discharge was dependent on applied voltage. The electron density of discharge was measured by power balance method. Electron density was found in the order of 1017 per cubic meter.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 219 ◽  
Author(s):  
Siavash Asadollahi ◽  
Jacopo Profili ◽  
Masoud Farzaneh ◽  
Luc Stafford

Water-repellent surfaces, often referred to as superhydrophobic surfaces, have found numerous potential applications in several industries. However, the synthesis of stable superhydrophobic surfaces through economical and practical processes remains a challenge. In the present work, we report on the development of an organosilicon-based superhydrophobic coating using an atmospheric-pressure plasma jet with an emphasis on precursor fragmentation dynamics as a function of power and precursor flow rate. The plasma jet is initially modified with a quartz tube to limit the diffusion of oxygen from the ambient air into the discharge zone. Then, superhydrophobic coatings are developed on a pre-treated microporous aluminum-6061 substrate through plasma polymerization of HMDSO in the confined atmospheric pressure plasma jet operating in nitrogen plasma. All surfaces presented here are superhydrophobic with a static contact angle higher than 150° and contact angle hysteresis lower than 6°. It is shown that increasing the plasma power leads to a higher oxide content in the coating, which can be correlated to higher precursor fragmentation, thus reducing the hydrophobic behavior of the surface. Furthermore, increasing the precursor flow rate led to higher deposition and lower precursor fragmentation, leading to a more organic coating compared to other cases.


Sign in / Sign up

Export Citation Format

Share Document