scholarly journals Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1631 ◽  
Author(s):  
Marina S. Dukhinova ◽  
Artur. Y. Prilepskii ◽  
Alexander A. Shtil ◽  
Vladimir V. Vinogradov

Macrophages are components of the innate immune system that control a plethora of biological processes. Macrophages can be activated towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the cue; however, polarization may be altered in bacterial and viral infections, cancer, or autoimmune diseases. Metal (zinc, iron, titanium, copper, etc.) oxide nanoparticles are widely used in therapeutic applications as drugs, nanocarriers, and diagnostic tools. Macrophages can recognize and engulf nanoparticles, while the influence of macrophage-nanoparticle interaction on cell polarization remains unclear. In this review, we summarize the molecular mechanisms that drive macrophage activation phenotypes and functions upon interaction with nanoparticles in an inflammatory microenvironment. The manifold effects of metal oxide nanoparticles on macrophages depend on the type of metal and the route of synthesis. While largely considered as drug transporters, metal oxide nanoparticles nevertheless have an immunotherapeutic potential, as they can evoke pro- or anti-inflammatory effects on macrophages and become essential for macrophage profiling in cancer, wound healing, infections, and autoimmunity.

Biomimetics ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 27 ◽  
Author(s):  
Maria P. Nikolova ◽  
Murthy S. Chavali

The development of new nanomaterials with high biomedical performance and low toxicity is essential to obtain more efficient therapy and precise diagnostic tools and devices. Recently, scientists often face issues of balancing between positive therapeutic effects of metal oxide nanoparticles and their toxic side effects. In this review, considering metal oxide nanoparticles as important technological and biomedical materials, the authors provide a comprehensive review of researches on metal oxide nanoparticles, their nanoscale physicochemical properties, defining specific applications in the various fields of nanomedicine. Authors discuss the recent development of metal oxide nanoparticles that were employed as biomedical materials in tissue therapy, immunotherapy, diagnosis, dentistry, regenerative medicine, wound healing and biosensing platforms. Besides, their antimicrobial, antifungal, antiviral properties along with biotoxicology were debated in detail. The significant breakthroughs in the field of nanobiomedicine have emerged in areas and numbers predicting tremendous application potential and enormous market value for metal oxide nanoparticles.


2020 ◽  
Vol 20 (3) ◽  
pp. 1440-1446
Author(s):  
In Chul Kong ◽  
Xin Yang ◽  
Wonil Wi ◽  
Minji Kim ◽  
Kyung-Seok Ko

The effects of six metal oxide nanoparticles (MO-NPs) on the activity and biosynthesis of an enzyme (β-galactosidase) were examined using a mutant strain of E. coli. Different sensitivities were observed according to the type of NP and metabolic process. The toxic effects on enzyme activity were significantly greater than on biosynthesis (p < 0.011), except in the presence of NiO. In both cases, ZnO NP caused the greatest inhibition among the tested NPs, followed by CuO. The EC50s for ZnO were 0.19 and 3.68 mg/L for enzyme activity and biosynthesis, respectively. Similar orders of toxicity were observed as follows: ZnO > CuO > NiO > Co3O4 > TiO2, Al2O3 for enzyme activity; and ZnO > CuO > NiO ≫ Al2O3, TiO2, Co3O4 for the biosynthetic process. More systematic research, including in-depth studies like investigation of the molecular mechanisms, is necessary to elucidate the detailed mechanisms of inhibition involved in both metabolic processes.


2019 ◽  
Vol 20 (11) ◽  
pp. 2808 ◽  
Author(s):  
Nereyda Niño-Martínez ◽  
Marco Felipe Salas Orozco ◽  
Gabriel-Alejandro Martínez-Castañón ◽  
Fernando Torres Méndez ◽  
Facundo Ruiz

The increase in bacterial resistance to one or several antibiotics has become a global health problem. Recently, nanomaterials have become a tool against multidrug-resistant bacteria. The metal and metal oxide nanoparticles are one of the most studied nanomaterials against multidrug-resistant bacteria. Several in vitro studies report that metal nanoparticles have antimicrobial properties against a broad spectrum of bacterial species. However, until recently, the bacterial resistance mechanisms to the bactericidal action of the nanoparticles had not been investigated. Some of the recently reported resistance mechanisms include electrostatic repulsion, ion efflux pumps, expression of extracellular matrices, and the adaptation of biofilms and mutations. The objective of this review is to summarize the recent findings regarding the mechanisms used by bacteria to counteract the antimicrobial effects of nanoparticles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2822
Author(s):  
In Chul Kong ◽  
Kyung-Seok Ko ◽  
Sohyeon Lee ◽  
Dong-Chan Koh ◽  
Robert Burlage

Comparison of the effects of metal oxide nanoparticles (NPs; CuO, NiO, ZnO, TiO2, and Al2O3) on different bioluminescence processes was evaluated using two recombinant (Pm-lux and Pu-lux) strains of Pseudomonas putida mt-2 with same inducer exposure. Different sensitivities and responses were observed according to the type of NPs and recombinant strains. EC50 values were determined. The negative effects on the bioluminescence activity of the Pm-lux strain was greater than for the Pu-lux strains for all NPs tested. EC50 values for the Pm-lux strain were 1.7- to 6.2-fold lower (corresponding to high inhibition) than for Pu-lux. ZnO NP caused the greatest inhibition among the tested NPs in both strains, showing approximately 11 times less EC50s of CuO, which appeared as the least inhibited. Although NPs showed different sensitivities depending on the bioluminescence process, similar orders of EC50s for both strains were observed as follows: ZnO > NiO, Al2O3 > TiO2 > CuO. More detailed in-depth systematic approaches, including in the field of molecular mechanisms, is needed to evaluate the accurate effect mechanisms involved in both bioluminescence metabolic processes.


Author(s):  
Sagadevan Suresh ◽  
Selvaraj Vennila ◽  
J. Anita Lett ◽  
Is Fatimah ◽  
Faruq Mohammad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document