scholarly journals Main Human Urinary Metabolites after Genipap (Genipa americana L.) Juice Intake

Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1155 ◽  
Author(s):  
Livia Dickson ◽  
Mathieu Tenon ◽  
Ljubica Svilar ◽  
Pascale Fança-Berthon ◽  
Raphael Lugan ◽  
...  

Genipap (Genipa americana L.) is a native fruit from Amazonia that contains bioactive compounds with a wide range of bioactivities. However, the response to genipap juice ingestion in the human exposome has never been studied. To identify biomarkers of genipap exposure, the untargeted metabolomics approach in human urine was applied. Urine samples from 16 healthy male volunteers, before and after drinking genipap juice, were analyzed by liquid chromatography–high-resolution mass spectrometry. XCMS package was used for data processing in the R environment and t-tests were applied on log-transformed and Pareto-scaled data to select the significant metabolites. The principal component analysis (PCA) score plots showed a clear distinction between experimental groups. Thirty-three metabolites were putatively annotated and the most discriminant were mainly related to the metabolic pathways of iridoids and phenolic derivatives. For the first time, the bioavailability of genipap iridoids after human consumption is reported. Dihydroxyhydrocinnamic acid, (1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate, hydroxyhydrocinnamic acid, genipic acid, 12-demethylated-8-hydroxygenipinic acid, 3(7)-dehydrogenipinic acid, genipic acid glucuronide, nonate, and 3,4-dihydroxyphenylacetate may be considered biomarkers of genipap consumption. Human exposure to genipap reveals the production of derivative forms of bioactive compounds such as genipic and genipinic acid. These findings suggest that genipap consumption triggers effects on metabolic signatures.

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1879
Author(s):  
Oladipupo Q. Adiamo ◽  
Yasmina Sultanbawa ◽  
Daniel Cozzolino

In recent times, the popularity of adding value to under-utilized legumes have increased to enhance their use for human consumption. Acacia seed (AS) is an underutilized legume with over 40 edible species found in Australia. The study aimed to qualitatively characterize the chemical composition of 14 common edible AS species from 27 regions in Australia using mid-infrared (MIR) spectroscopy as a rapid tool. Raw and roasted (180 °C, 5, 7, and 9 min) AS flour were analysed using MIR spectroscopy. The wavenumbers (1045 cm−1, 1641 cm−1, and 2852–2926 cm−1) in the MIR spectra show the main components in the AS samples. Principal component analysis (PCA) of the MIR data displayed the clustering of samples according to species and roasting treatment. However, regional differences within the same AS species have less of an effect on the components, as shown in the PCA plot. Statistical analysis of absorbance at specific wavenumbers showed that roasting significantly (p < 0.05) reduced the compositions of some of the AS species. The results provided a foundation for hypothesizing the compositional similarity and/or differences among AS species before and after roasting.


2021 ◽  
Vol 12 ◽  
Author(s):  
Valentina V. Gultyaeva ◽  
Dmitriy Y. Uryumtsev ◽  
Margarita I. Zinchenko ◽  
Vladimir N. Melnikov ◽  
Natalia V. Balioz ◽  
...  

Coordination of cardiovascular and respiratory systems enables a wide range of human adaptation and depends upon the functional state of an individual organism. Hypoxia is known to elicit changes in oxygen and carbon dioxide sensitivity, while training alters cardiorespiratory coordination (CRC). The delayed effect of high altitude (HA) acclimatization on CRC in mountaineers remains unknown. The objective of this study was to compare CRC in acute hypercapnia in mountaineers before and after a HA expedition. Nine trained male mountaineers were investigated at sea level before (Pre-HA) and after a 20-day sojourn at altitudes of 4,000–7,000 m (Post-HA) in three states (Baseline, Hypercapnic Rebreathing, and Recovery). A principal component (PC) analysis was performed to evaluate the CRC. The number of mountaineers with one PC increased Post-HA (nine out of nine), compared to Pre-HA (five out of nine) [Chi-square (df = 1) = 5.14, P = 0.023]; the percentage of total variance explained by PC1 increased [Pre-HA median 65.6 (Q1 64.9/Q3 74.9), Post-HA 75.6 (73.3/77.9), P = 0.028]. Post-HA, the loadings of the expired fraction of O2, CO2, and ventilation onto PC1 did not change, and the loading of heart rate increased [Pre-HA 0.64 (0.45/0.68) and Post-HA 0.76 (0.65/0.82), P = 0.038]. During the Recovery, the percentage of total variance explained by PC1 was higher than during the Baseline. Post-HA, there was a high correlation between the Exercise addiction scores and the eigenvalues of PC1 (r = 0.9, P = 0.001). Thus, acute hypercapnic exposure reveals the Post-HA increase in cardiorespiratory coordination, which is highly related to the level of exercise addiction.


Author(s):  
João Junqueira ◽  
Michelle do Nascimento ◽  
Lucas da Costa ◽  
Lincoln Romualdo ◽  
Francisco de Aquino ◽  
...  

Xylopia aromatica (Lam.) Mart. (Annonaceae) is a typical species from the Brazilian cerrado that presents medicinal properties. The plant is distinguished by its large white flowers which produce a pleasant fragrance. X. aromatica is characterized by a wide range of medicinal application. These characteristics have motivated us to investigate the flowers volatile organic compounds (VOCs) via in vivo and in vitro protocols by a headspace solid-phase microextraction (HS‑SPME) technique combined with gas chromatography-mass spectrometry (HS-SPME/GC‑MS). Four different fibers, extraction times and temperatures were the parameters changed to lead to the maximum profiling of the volatile constituents. Data were analyzed using principal component analysis (PCA). A total of 77 VOCs were extracted from the floral scent, with 52 and 68 extracted from in vivo and in vitro sampling, respectively, of which 48 were reported for the first time in the literature as volatile constituents from X. aromatica flowers. The extraction and identification of VOCs were successfully performed through HS-SPME/GC-MS. The PCA data allowed the identification of parameters that led to the maximum number of VOCs, which were polyacrylate (PA) and carboxen/polydimethylsiloxane (CAR/PDMS) fibers, 60 min extraction time and temperature of 29.0 °C. Among the volatile constituents identified, sesquiterpenes predominated, comprising about 61.04%.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 683
Author(s):  
Aleksandra Skalska ◽  
Manfred Beckmann ◽  
Fiona Corke ◽  
Gulsemin Savas Tuna ◽  
Metin Tuna ◽  
...  

Brachypodium distachyon (Brachypodium) is a non-domesticated model grass that has been used to assess population level genomic variation. We have previously established a collection of 55 Brachypodium accessions that were sampled to reflect five different climatic regions of Turkey; designated 1a, 1c, 2, 3 and 4. Genomic and methylomic variation differentiated the collection into two subpopulations designated as coastal and central (respectively from regions 1a, 1c and the other from 2, 3 and 4) which were linked to environmental variables such as relative precipitation. Here, we assessed how far genomic variation would be reflected in the metabolomes and if this could be linked to an adaptive trait. Metabolites were extracted from eight-week-old seedlings from each accession and assessed using flow infusion high-resolution mass spectrometry (FIE-HRMS). Principal Component Analysis (PCA) of the derived metabolomes differentiated between samples from coastal and central subpopulations. The major sources of variation between seedling from the coastal and central subpopulations were identified. The central subpopulation was typified by significant increases in alanine, aspartate and glutamate metabolism and the tricarboxylic acid (TCA) cycle. Coastal subpopulation exhibited elevated levels of the auxin, indolacetic acid and rhamnose. The metabolomes of the seedling were also determined following the imposition of drought stress for seven days. The central subpopulation exhibited a metabolomic shift in response to drought, but no significant changes were seen in the coastal one. The drought responses in the central subpopulation were typified by changes in amino acids, increasing the glutamine that could be functioning as a stress signal. There were also changes in sugars that were likely to be an osmotic counter to drought, and changes in bioenergetic metabolism. These data indicate that genomic variation in our Turkish Brachypodium collection is largely reflected as distinctive metabolomes (“metabolotypes”) through which drought tolerance might be mediated.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xing-Ya Guo ◽  
Chong-Xin He ◽  
Yu-Qin Wang ◽  
Chao Sun ◽  
Guang-Ming Li ◽  
...  

Circular RNAs (circRNAs) exhibit a wide range of physiological and pathological activities. To uncover their role in hepatic steatosis, we investigated the expression profile of circRNAs in HepG2-based hepatic steatosis induced by high-fat stimulation. Differentially expressed circRNAs were subjected to validation using QPCR and functional analyses using principal component analysis, hierarchical clustering, target prediction, gene ontology (GO), and pathway annotation, respectively. Bioinformatic integration established the circRNA-miRNA-mRNA regulatory network so as to identify the mechanisms underlying circRNAs’ metabolic effect. Here we reported that hepatic steatosis was associated with a total of 357 circRNAs. Enrichment of transcription-related GOs, especially GO: 0006355, GO: 004589, GO: 0045944, GO: 0045892, and GO: 0000122, demonstrated their specific actions in transcriptional regulation. Lipin 1 (LPIN1) was recognized to mediate the transcriptional regulatory effect of circRNAs on metabolic pathways. circRNA-miRNA-mRNA network further identified the signaling cascade of circRNA_021412/miR-1972/LPIN1, which was characterized by decreased level of circRNA_021412 and miR-1972-based inhibition of LPIN1. LPIN1-induced downregulation of long chain acyl-CoA synthetases (ACSLs) expression finally resulted in the hepatosteatosis. These findings identify circRNAs to be important regulators of hepatic steatosis. Transcription-dependent modulation of metabolic pathways may underlie their effects, partially by the circRNA_021412/miR-1972/LPIN1 signaling.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zohre Firoozi ◽  
Alireza Sazmand ◽  
Alireza Zahedi ◽  
Akram Astani ◽  
Ali Fattahi-Bafghi ◽  
...  

Abstract Background Apicomplexan parasites of the genus Cryptosporidium infect a wide range of animal species as well as humans. Cryptosporidium spp. can cause life threatening diarrhea especially in young animals, children, immunocompromised patients and malnourished individuals. Asymptomatic cryptosporidial infections in animals can also occur, making these animals potential reservoirs of infection. Methods In the present study, a molecular survey of Cryptosporidium spp. in ruminants that were slaughtered for human consumption in Yazd Province, located in central Iran was conducted. Faeces were collected per-rectum from 484 animals including 192 cattle, 192 sheep and 100 goats. DNA was extracted from all samples and screened for Cryptosporidium by PCR amplification of the 18S rRNA gene. Positives were Sanger sequenced and further subtyped by sequence analysis of the 60 kDa glycoprotein (gp60) locus. Results In total, Cryptosporidium spp. were detected in 22 animals: C. andersoni and C. bovis in seven and two cattle faecal samples, respectively, C. ubiquitum in five sheep, and C. xiaoi in six sheep and two goat samples, respectively. To our knowledge, this study provides for the first time, molecular information concerning Cryptosporidium species infecting goats in Iran, and is also the first report of C. ubiquitum and C. xiaoi from ruminants in Iran. Conclusion The presence of potentially zoonotic species of Cryptosporidium in ruminants in this region may suggest that livestock could potentially contribute to human cryptosporidiosis, in particular among farmers and slaughterhouse workers, in the area. Further molecular studies on local human populations are required to more accurately understand the epidemiology and transmission dynamics of Cryptosporidium spp. in this region.


2020 ◽  
Vol 21 (2) ◽  
pp. 466 ◽  
Author(s):  
Charles Banliat ◽  
Guillaume Tsikis ◽  
Valérie Labas ◽  
Ana-Paula Teixeira-Gomes ◽  
Emmanuelle Com ◽  
...  

The bovine embryo develops in contact with the oviductal fluid (OF) during the first 4–5 days of pregnancy. The aim of this study was to decipher the protein interactions occurring between the developing embryo and surrounding OF. In-vitro produced 4–6 cell and morula embryos were incubated or not (controls) in post-ovulatory OF (OF-treated embryos) and proteins were then analyzed and quantified by high resolution mass spectrometry (MS) in both embryo groups and in OF. A comparative analysis of MS data allowed the identification and quantification of 56 embryo-interacting proteins originated from the OF, including oviductin (OVGP1) and several annexins (ANXA1, ANXA2, ANXA4) as the most abundant ones. Some embryo-interacting proteins were developmental stage-specific, showing a modulating role of the embryo in protein interactions. Three interacting proteins (OVGP1, ANXA1 and PYGL) were immunolocalized in the perivitelline space and in blastomeres, showing that OF proteins were able to cross the zona pellucida and be taken up by the embryo. Interacting proteins were involved in a wide range of functions, among which metabolism and cellular processes were predominant. This study identified for the first time a high number of oviductal embryo-interacting proteins, paving the way for further targeted studies of proteins potentially involved in the establishment of pregnancy in cattle.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Snorre Sulheim ◽  
Fredrik A. Fossheim ◽  
Alexander Wentzel ◽  
Eivind Almaas

Abstract Background A wide range of bioactive compounds is produced by enzymes and enzymatic complexes encoded in biosynthetic gene clusters (BGCs). These BGCs can be identified and functionally annotated based on their DNA sequence. Candidates for further research and development may be prioritized based on properties such as their functional annotation, (dis)similarity to known BGCs, and bioactivity assays. Production of the target compound in the native strain is often not achievable, rendering heterologous expression in an optimized host strain as a promising alternative. Genome-scale metabolic models are frequently used to guide strain development, but large-scale incorporation and testing of heterologous production of complex natural products in this framework is hampered by the amount of manual work required to translate annotated BGCs to metabolic pathways. To this end, we have developed a pipeline for an automated reconstruction of BGC associated metabolic pathways responsible for the synthesis of non-ribosomal peptides and polyketides, two of the dominant classes of bioactive compounds. Results The developed pipeline correctly predicts 72.8% of the metabolic reactions in a detailed evaluation of 8 different BGCs comprising 228 functional domains. By introducing the reconstructed pathways into a genome-scale metabolic model we demonstrate that this level of accuracy is sufficient to make reliable in silico predictions with respect to production rate and gene knockout targets. Furthermore, we apply the pipeline to a large BGC database and reconstruct 943 metabolic pathways. We identify 17 enzymatic reactions using high-throughput assessment of potential knockout targets for increasing the production of any of the associated compounds. However, the targets only provide a relative increase of up to 6% compared to wild-type production rates. Conclusion With this pipeline we pave the way for an extended use of genome-scale metabolic models in strain design of heterologous expression hosts. In this context, we identified generic knockout targets for the increased production of heterologous compounds. However, as the predicted increase is minor for any of the single-reaction knockout targets, these results indicate that more sophisticated strain-engineering strategies are necessary for the development of efficient BGC expression hosts.


2021 ◽  
Vol 95 (10) ◽  
pp. 3223-3234
Author(s):  
Selina Hemmer ◽  
Lea Wagmann ◽  
Markus R. Meyer

AbstractAmphetamine is widely consumed as drug of abuse due to its stimulating and cognitive enhancing effects. Since amphetamine has been on the market for quite a long time and it is one of the most commonly used stimulants worldwide, to date there is still limited information on its effects on the metabolome. In recent years, untargeted toxicometabolomics have been increasingly used to study toxicity-related pathways of such drugs of abuse to find and identify important endogenous and exogenous biomarkers. In this study, the acute effects of amphetamine intake on plasma and urinary metabolome in rats were investigated. For this purpose, samples of male Wistar rats after a single dose of amphetamine (5 mg/kg) were compared to a control group using an untargeted metabolomics approach. Analysis was performed using normal and reversed phase liquid chromatography coupled to high-resolution mass spectrometry using positive and negative ionization mode. Statistical evaluation was performed using Welch’s two-sample t test, hierarchical clustering, as well as principal component analysis. The results of this study demonstrate a downregulation of amino acids in plasma samples after amphetamine exposure. Furthermore, four new potential biomarkers N-acetylamphetamine, N-acetyl-4-hydroxyamphetamine, N-acetyl-4-hydroxyamphetamine glucuronide, and amphetamine succinate were identified in urine. The present study complements previous data and shows that several studies are necessary to elucidate altered metabolic pathways associated with acute amphetamine exposure.


2020 ◽  
Author(s):  
Snorre Sulheim ◽  
Fredrik A. Fossheim ◽  
Alexander Wentzel ◽  
Eivind Almaas

AbstractBackgroundA wide range of bioactive compounds are produced by enzymes and enzymatic complexes encoded in biosynthetic gene clusters (BGCs). These BGCs can be identified and functionally annotated based on their DNA sequence. Candidates for further research and development may be prioritized based on properties such as their functional annotation, (dis)similarity to known BGCs, and bioactivity assays. Production of the target compound in the native strain is often not achievable, rendering heterologous expression in an optimized host strain as a promising alternative. Genome-scale metabolic models are frequently used to guide strain development, but large-scale incorporation and testing of heterologous production of complex natural products in this framework is hampered by the amount of manual work required to translate annotated BGCs to metabolic pathways. To this end, we have developed a pipeline for an automated reconstruction of BGC associated metabolic pathways responsible for the synthesis of non-ribosomal peptides and polyketides, two of the dominant classes of bioactive compounds.ResultsThe developed pipeline correctly predicts 72.8% of the metabolic reactions in a detailed evaluation of 8 different BGCs comprising 228 functional domains. By introducing the reconstructed pathways into a genome-scale metabolic model we demonstrate that this level of accuracy is sufficient to make reliable in silico predictions with respect to production rate and gene knockout targets. Furthermore, we apply the pipeline to a large BGC database and reconstruct 943 metabolic pathways. We identify 17 enzymatic reactions using high-throughput assessment of potential knockout targets for increasing the production of any of the associated compounds. However, the targets only provide a relative increase of up to 6% compared to wild-type production rates.ConclusionsWith this pipeline we pave the way for an extended use of genome-scale metabolic models in strain design of heterologous expression hosts. In this context, we identified generic knockout targets for the increased production of heterologous compounds. However, as the predicted increase is minor for any of the single-reaction knockout targets, these results indicate that more sophisticated strain-engineering strategies are necessary for the development of efficient BGC expression hosts.


Sign in / Sign up

Export Citation Format

Share Document