scholarly journals Probiotic Enrichment and Reduction of Aflatoxins in a Traditional African Maize-Based Fermented Food

Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 265 ◽  
Author(s):  
Alex Wacoo ◽  
Ivan Mukisa ◽  
Rehema Meeme ◽  
Stellah Byakika ◽  
Deborah Wendiro ◽  
...  

Fermentation of food products can be used for the delivery of probiotic bacteria and means of food detoxification, provided that probiotics are able to grow, and toxins are reduced in raw materials with minimal effects on consumer acceptability. This study evaluated probiotic enrichment and detoxification of kwete, a commonly consumed traditional fermented cereal beverage in Uganda, by the use of starter culture with the probiotic Lactobacillus rhamnosus yoba 2012 and Streptococcus thermophilus C106. Probiotic kwete was produced by fermenting a suspension of ground maize grain at 30 °C for a period of 24 h, leading to a decrease of the pH value to ≤ 4.0 and increase in titratable acidity of at least 0.2% (w/v). Probiotic kwete was acceptable to the consumers with a score of ≥6 on a 9-point hedonic scale. The products were stable over a month’s study period with a mean pH of 3.9, titratable acidity of 0.6% (w/v), and Lactobacillus rhamnosus counts >108 cfu g−1. HPLC analysis of aflatoxins of the water-soluble fraction of kwete indicated that fermentation led to an over 1000-fold reduction of aflatoxins B1, B2, G1, and G2 spiked in the raw ingredients. In vitro fluorescence spectroscopy confirmed binding of aflatoxin B1 to Lactobacillus rhamnosus with an efficiency of 83.5%. This study shows that fermentation is a means to enrich with probiotics and reduce widely occurring aflatoxin contamination of maize products that are consumed as staple foods in sub-Saharan Africa.

Author(s):  
Anna Łepecka ◽  
Dorota Zielińska ◽  
Monika Brejnak ◽  
Aleksandra Ołdak ◽  
Danuta Kołożyn-Krajewska

The objective of the research study was to specify technological properties of the Lactobacillus rhamnosus K3 strain. This bacterial strain was tested for its ability to grow under the processing conditions, such as temperature [ºC]: 10, 15, 45, pH value: 3.9, 6.4, 9.6, and a high NaCl concentration [%]: 5, 8, 10. Biochemical tests (sugar fermentation and enzyme activity) were carried out and the survival of those bacteria was assayed in the medium depending on the type of food (milk, tomato juice, and beef broth). Milk fermented with Lb. rhamnosus K3 was subjected to 6-week incubation. The results showed that the Lb. rhamnosus K3 strain was able to grow at different temperatures but within a narrow pH range. The bacterial strain did not tolerate high NaCl concentrations, however it grew well in any kind of food medium. A particularly good bacterial growth was observed in milk. Lb. rhamnosus K3 was able to metabolize sugars. This strain did not reduce nitrates; no catalase activity was detected either. The β-galactosidase enzyme was identified. The best temperature of milk fermentation was proved to be 37 ºC. It was also found that Lb. rhamnosus K3 had functional properties allowing its use as a starter culture for milk. The number of bacterial cells remained at a level higher than 8 log CFU/ml throughout the entire 6-week incubation of refrigeration storage (4 ºC). The bacteria of Lactobacillus rhamnosus K3 were capable of fermenting milk confirming their suitability as a starter culture for milk products.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 573
Author(s):  
Carmen Masiá ◽  
Asger Geppel ◽  
Poul Erik Jensen ◽  
Patrizia Buldo

To overcome texture and flavor challenges in fermented plant-based product development, the potential of microorganisms is generating great interest in the food industry. This study examines the effect of Lactobacillus rhamnosus on physicochemical properties of fermented soy, oat, and coconut. L. rhamnosus was combined with different lactic acid bacteria strains and Bifidobacterium. Acidification, titratable acidity, and viability of L. rhamnosus and Bifidobacterium were evaluated. Oscillation and flow tests were performed to characterize rheological properties of fermented samples. Targeted and untargeted volatile organic compounds in fermented samples were assessed, and sensory evaluation with a trained panel was conducted. L. rhamnosus reduced fermentation time in soy, oat, and coconut. L. rhamnosus and Bifidobacterium grew in all fermented raw materials above 107 CFU/g. No significant effect on rheological behavior was observed when L. rhamnosus was present in fermented samples. Acetoin levels increased and acetaldehyde content decreased in the presence of L. rhamnosus in all three bases. Diacetyl levels increased in fermented oat and coconut samples when L. rhamnosus was combined with a starter culture containing Streptococcus thermophilus and with another starter culture containing S. thermophilus, L. bulgaricus and Bifidobacterium. In all fermented oat samples, L. rhamnosus significantly enhanced fermented flavor notes, such as sourness, lemon, and fruity taste, which in turn led to reduced perception of base-related attributes. In fermented coconut samples, gel firmness perception was significantly improved with L. rhamnosus. The findings suggest that L. rhamnosus can improve fermentation time and sensory perception of fermented plant-based products.


Author(s):  
Petr Doležal ◽  
Dušan Kořínek ◽  
Jan Doležal ◽  
Václav Pyrochta

In the experiment was the effect of biological additive on the fermentation quality of crushed maize ears of two hybrids by comparing with the untreated control. The bacterial inoculant „A“ contained selected bacterial strains of Lactobacillus rhamnosus (NCIMB 30121) and Enterococcus faecium (NCIMB 30122). As effective substances of bacterial water–soluble inoculant „B“ were selected bacterial strains of Lactobacillus rhamnosus (NCIMB 30121), Lactobacillus plantarum (DSM 12836), Lactobacillus brevis (DSM 12835), Lactobacillus buchneri (DSM 12856), Pediococcus acidialactici (P. pentosaceus) (DSM 12834). The addition of inoculant „A“ in our experiment conditions increased statistically significantly (P<0.01) the pH value (4.09±0.01), resp. 4.02±0.02 in second trial with Pedro hybrid. The bacterial inoculant „B“ increased significantly (P<0.01) the contents of lactic acid (50.95±0.1.87 g/kg DM), acetic acid (18.61±0.34 g/kg DM), sum of acids (69.55±1.62 g/kg DM) and decreased (P<0.01) in the first trial the ethanol content (5.41±0.45 g/kg DM). The highest DM content (P<0.01) was in all experimental inoculated silages with additive „A“ (54.26±0.86%, and 53.56±0.54%, resp.). The bacterial inoculant „A“ increased significantly (P<0.01) in comparison with control silage in the second trial the content of lactic acid (34.66Ī2.81 g/kg DM), sum of acids (44.68±3.54 g/kg DM), the total acids content (32.87±2.88 g/kg DM), and ethanol content (17.33±0.79 g/kg DM). The inoculation positive effect was demonstrated in reduction of ethanol amount and of total acid production. The pH value of inoculated silages was not significantly lower than that in the control silage.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3854 ◽  
Author(s):  
Fidelis ◽  
Moura ◽  
Kabbas Junior ◽  
Pap ◽  
Mattila ◽  
...  

The circular economy is an umbrella concept that applies different mechanisms aiming to minimize waste generation, thus decoupling economic growth from natural resources. Each year, an estimated one-third of all food produced is wasted; this is equivalent to 1.3 billion tons of food, which is worth around US$1 trillion or even $2.6 trillion when social and economic costs are included. In the fruit and vegetable sector, 45% of the total produced amount is lost in the production (post-harvest, processing, and distribution) and consumption chains. Therefore, it is necessary to find new technological and environmentally friendly solutions to utilize fruit wastes as new raw materials to develop and scale up the production of high value-added products and ingredients. Considering that the production and consumption of fruits has increased in the last years and following the need to find the sustainable use of different fruit side streams, this work aimed to describe the chemical composition and bioactivity of different fruit seeds consumed worldwide. A comprehensive focus is given on the extraction techniques of water-soluble and lipophilic compounds and in vitro/in vivo functionalities, and the link between chemical composition and observed activity is holistically explained.


2019 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Warsono El Kiyat ◽  
Kevin Reynaldo ◽  
Jeremiah Irwan ◽  
Eryd Saputra

Bromelain is one of the protease that can be produced from all of parts of the pineapple plants (Ananas comosus). It has potential to improve quality of local Indonesian food such as tempeh gembus, virgin coconut oil (VCO), and dumbo catfish based fish sauce (DCBFS). Tempeh gembus is a traditional food that has unique characteristics especially in its taste because it contains amino acids. VCO attracts consumers because of its health aspect. Its raw materials are available in Indonesia. DCBS  is a product of fermented fish with salt that has a distinctive taste and is produced in Indonesia. This study aimed to analyze the effect of bromelain on local Indonesian food and its applications. The result showed that the use of bromelain in local Indonesian food could improve the quality and nutritional value of local food. Bromelain can be used in local food like tempeh gembus, virgin coconut oil, and fish sauce from dumbo catfish. The use of bromelain in tempeh gembus could  increase both of the water-soluble nitrogen level and the pH value. However, the addition of bromelain in the production of virgin coconut oil and fish sauce from dumbo catfish could increase the yield of theirs. .


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1182 ◽  
Author(s):  
Carmen Masiá ◽  
Poul Erik Jensen ◽  
Patrizia Buldo

Texture and flavor are currently the main challenges in the development of plant-based dairy alternatives. To overcome them, the potential of microorganisms for fermentation of plant-based raw materials is generating great interest in the food industry. This study examines the effect of Lactobacillus rhamnosus, LGG® (LGG® is a trademark of Chr. Hansen A/S) on the physicochemical properties of fermented soy, oat, and coconut. LGG® was combined with different lactic acid bacteria (LAB) strains and Bifidobacterium, BB-12® (BB-12® is a trademark of Chr. Hansen A/S). Acidification, titratable acidity, and growth of LGG® and BB-12® were evaluated. Oscillation and flow tests were performed to analyze the rheological properties of fermented samples. Acids, carbohydrates, and volatile organic compounds in fermented samples were identified, and a sensory evaluation with a trained panel was conducted. LGG® reduced fermentation time in all three bases. LGG® and BB-12® grew in all fermented raw materials above 107 CFU/g. LGG® had no significant effect on rheological behavior of the samples. Acetoin levels increased and acetaldehyde content decreased in the presence of LGG® in all three bases. Diacetyl levels increased in fermented oat and coconut samples when LGG® was combined with YOFLEX® YF-L01 and NU-TRISH® BY-01 (YOFLEX® and NU-TRISH® are trademarks of Chr. Hansen A/S). In all fermented oat samples, LGG® significantly enhanced fermented flavor notes, such as sourness, lemon, and fruity taste, which in turn led to reduced perception of the attributes related to the base. In fermented coconut samples, gel firmness perception was significantly improved in the presence of LGG®. These findings suggest supplementation of LAB cultures with LGG® to improve fermentation time and sensory perception of fermented plant-based products.


2021 ◽  
Vol 11 (3) ◽  
pp. 966
Author(s):  
Małgorzata Ziarno ◽  
Rozeta Hasalliu ◽  
Angelika Cwalina

The aim of this study was to evaluate the effect of the addition of various milk protein powder preparations (MPC-80, WPC-70, sweet whey, non-demineralized or demineralized whey, whey permeate, rennet casein, buttermilk) to selected quality parameters and digestibility of milk proteins in kefir. Kefir samples analyzed in the study were prepared under laboratory conditions with three industrial bacterial starter cultures. They were examined microbiologically (lactobacilli, lactococci, yeast) and for pH, total protein content, hardness, adhesiveness, water-holding capacity (WHC), and protein digestibility (using two in vitro methods along with the determination of the content of available lysine and glycine). The counts of lactococci and lactobacilli were estimated at levels above 7 and 6 log(CFU/mL), respectively. Yeast was not found in the kefir samples. The pH value of the samples was 4.4–5.2. The pH, hardness, adhesiveness, and WHC were dependent on the type of kefir starter culture and the type of milk protein powder added. Each protein preparation added increased the amount of available lysine and glycine. However, when converted for 1 g of kefir protein, the changes in the content of available lysine and glycine were variable and depended on both the milk protein powder and starter culture used.


Author(s):  
Chenxi Nie ◽  
Xin Yan ◽  
Xiaoqing Xie ◽  
Ziqi Zhang ◽  
Jiang Zhu ◽  
...  

Abstract Background The influence of β-glucan on the human gut microbiota is closely related to the physicochemical structure of β-glucan. We purified a homogeneous water-soluble polysaccharide from Tibetan hull-less barley 25 and studied its structure and the in vitro fermentation profile. Results Analysis by gas chromatography (GC), Fourier-transformed infrared (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and atomic force micrograph (AFM) helped determine the hull-less barley polysaccharide to be a β-glucan (molecular weight: 3.45 × 104 Da), which was further characterized as mixed-linkage (1 → 3)(1 → 4)-linked β-d-glucans. SEM images demonstrated an intricate web structure of the hull-less barley polysaccharide, while the AFM images revealed the presence of small spherical particles in its structure. In addition, the microbiota composition of the hull-less barley polysaccharide group was found to be altered, wherein the abundance of Pantoea, Megamonas, Bifidobacterium, and Prevotella-9 were increased. On the other hand, in vitro fermentation revealed that hull-less barley polysaccharide significantly decreased the pH value and increased the production of acetate, propionate, and butyrate. Conclusions Hull-less barley polysaccharide is a type of dietary fiber, and its analysis suggested that it may serve as a prebiotic food supplement for the regulation of the gut microbiota.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Bingyue Wang ◽  
Qian Liu ◽  
Yinghong Huang ◽  
Yueling Yuan ◽  
Qianqian Ma ◽  
...  

Background. Polysaccharide of Spirulina platensis (PSP) is a kind of water-soluble polysaccharide extracted from Spirulina platensis. It has been proved to have antitumor, antioxidation, antiaging, and antivirus properties. And it has a promising prospect for wide application. Objective. This study aims to identify an extraction process for high-purity polysaccharide in Spirulina (PSP) through a series of optimization methods and then evaluates its initial antiaging activities. Methods. Four kinds of extraction methods—hot-water extraction, alkali extraction, ultrasonic-assisted extraction, and freeze-thaw extraction—were compared to find the optimal one, which was further optimized by response surface methodology. PSP was obtained after the crude PSP was deproteinized and depigmented. The antiaging effects of PSP were preliminarily evaluated through in vitro cell experiments. Results. The alkali extraction method was determined as the optimal method, with the optimized extraction process consisting of a solid-liquid ratio of 1 : 50, a pH value of 10.25, a temperature of 89.24°C, and a time of 9.99 h. The final PSP contained 71.65% of polysaccharide and 8.54% of protein. At a concentration of 50 μg/mL, PSP exerted a significant promoting effect on the proliferation and traumatic fusion of human immortalized epidermal cells HaCaT. Conclusion. An extraction method for high-purity PSP with a high extraction rate was established, and in vitro results suggest antioxidation and antiaging activities.


2021 ◽  
Vol 9 (1) ◽  
pp. 111-121
Author(s):  
Isaac M. Maitha ◽  
Dasel W. M. Kaindi ◽  
Cherotich Cheruiyot

Fermentation serves a key role in inhibiting spoilage microorganism through acidification and production of antimicrobial compounds. The technological information on properties of Streptococcus infantarius sub sp. infantarius which is predominant in most African fermented is dairy products very little. This study was therefore carried out to determine the functionality of selected African Streptococci strains in fermented dairy products. Pasteurized milk samples from camels and cows were inoculated with different strains and a selected combination at a rate of 3% v/v and incubated at different temperatures of 25 oC, 30 oC, 37 oC, and 45 oC for 9 hours. Analysis was done after every 3 hours for pH and titratable acidity while viscosity was done after incubation and cooling of the product. The different fermented milk samples were subsequently evaluated for consumer acceptability. Milk inoculated with both African type Streptococcus thermophillus (146A8.2) and Streptococcus infantarius sub sp. infantarius CJ 18 (9377), and incubated for nine hours recorded the highest amount of titratable acidity of 0.97 for the camel milk and had the least pH value of 4.12 for cow milk compared to the other strains. The cow milk had the highest viscosity level of 59.64 cPs compared to camel milk which was 29.44 cPs. The levels of titratable acidity and viscosity depended on the strain and incubation temperature. The African type Streptococcus thermophillus (146A8.2) and Streptococcus infantarius sub sp. infantarius CJ 18 (9377), isolated from fermented camel milk had good technological properties that are useful as starter culture for development of fermented milk products.


Sign in / Sign up

Export Citation Format

Share Document