scholarly journals Storage stability and fatty acid composition of Sanliurfa butterfat

Mljekarstvo ◽  
2021 ◽  
Vol 71 (2) ◽  
pp. 124-131
Author(s):  
Naciye Ünver ◽  

In this research, Sanliurfa butterfat, collected from local small-sized dairy plants located in Karacadağ Region of Sanliurfa, were stored at two different temperatures (4 and 20 °C) for 12 months. The butterfat samples have been analysed to determine some biochemical parameters (free fatty acids, acid value, peroxide value, induction time, and pH) and fatty acid composition on the 1st, 30th, 90th, 120th, 180th, 270th and 360th days of storage. The mean value of free fatty acids, acid value and peroxide value of the butterfat stored in refrigerator conditions (4 °C) were lower, and the induction time was higher than the butterfat stored at room temperature (20 °C) (P<0.05). Furthermore, the acid value, free fatty acids value, C16:1, C17:1, C18:2n6c and MUFA of the butterfat increased significantly during the storage period (P<0.05). The ratio of saturated fatty acid of the butterfat decreased during the storage (P<0.05). According to the results of free fatty acids, traditional Sanliurfa butterfat at room temperature (20 °C) could be stored safely for a maximum of 3 months, while this period could be up to 6 months for the butterfat stored at refrigerated temperature (4 °C).

Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1972 ◽  
Author(s):  
Wesolowska ◽  
Brys ◽  
Barbarska ◽  
Strom ◽  
Szymanska-Majchrzak ◽  
...  

Human milk fat plays an essential role as the source of energy and cell function regulator; therefore, the preservation of unique human milk donors’ lipid composition is of fundamental importance. To compare the effects of high pressure processing (HPP) and holder pasteurization on lipidome, human milk was processed at 62.5 °C for 30 min and at five variants of HPP from 450 MPa to 600 MPa, respectively. Lipase activity was estimated with QuantiChrom™ assay. Fatty acid composition was determined with the gas chromatographic technique, and free fatty acids content by titration with 0.1 M KOH. The positional distribution of fatty acid in triacylglycerols was performed. The oxidative induction time was obtained from the pressure differential scanning calorimetry. Carotenoids in human milk were measured by liquid chromatography. Bile salt stimulated lipase was completely eliminated by holder pasteurization, decreased at 600 MPa, and remained intact at 200 + 400 MPa; 450 MPa. The fatty acid composition and structure of human milk fat triacylglycerols were unchanged. The lipids of human milk after holder pasteurization had the lowest content of free fatty acids and the shortest induction time compared with samples after HPP. HPP slightly changed the β-carotene and lycopene levels, whereas the lutein level was decreased by 40.0% up to 60.2%, compared with 15.8% after the holder pasteurization.


2019 ◽  
Vol 70 (1) ◽  
pp. 288 ◽  
Author(s):  
H. Karaosmanoğlu ◽  
N. Ş. Üstün

In this study, the changes in fatty acid composition, peroxide number, free fatty acids, oleic acid/ linoleic acid (O/L) and iodine value (IV) were investigated during the traditional storage of hazelnuts. The samples were selected from Giresun Quality Tombul, Kara and Sivri hazelnut varieties with economical prescription. Samples were stored according to the conventional methods in external interference-free warehouses until the next harvest time. At the end of storage, the amount of oleic acid in all varieties increased while the amount of linoleic acid decreased. Even though an increase in the free fatty acids and peroxide number in all types of hazelnuts during storage was determined, the values were considerably lower than the rancidity limits at the end of the storage period. As a result of the study it was observed that the hazelnut shell is an important preservative during storage and that hazelnuts can be preserved until the next harvest period under simple storage conditions.


2014 ◽  
Vol 68 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Branislav Sojic ◽  
Ljiljana Petrovic ◽  
Anamarija Mandic ◽  
Ivana Sedej ◽  
Natalija Dzinic ◽  
...  

The influence of drying and ripeninig conditions (traditional and industrial) in the production of dry fermented sausage Petrovsk? klob?sa, on fatty-acid composition and oxidative changes in lipids, during 7 months of storage, was investigated. During the storage period, the sum of unsaturated fatty acids and the content of free fatty acids were significantly higher (p<0.05), while the content of malondialdehyde was significantly lower in the sausage subjected to traditional conditions of drying and ripening. At the end of the storage period, contents of pentanal and hexanal in the sausage subjected to traditional conditions of drying and ripening (4.03 ?g/g and 1.67 ?g/g, respectively) were significantly lower (p<0.05) in comparison with these contents in the sausage subjected to industrial conditions of drying and ripening. Traditional conditions of drying and ripening at lower temperatures have led to lower oxidative changes in lipids in traditional dry fermented sausage Petrovsk? klob?sa during storage period.


2012 ◽  
Vol 32 (3) ◽  
pp. 629-635 ◽  
Author(s):  
Maria Fernanda Donato Gonçalves ◽  
Sueli Regina Baggio

Butter samples were evaluated for free fatty acids, peroxide value, cholesterol, and fatty acid composition focusing on the trans isomer and conjugated linoleic acid (CLA). Sixty six samples were analyzed. Thirty six were collected in Brazil, eighteen in France, and twelve in Argentina. Samples were evaluated by free fatty acids, peroxide value, total lipid, cholesterol and fatty acid composition. The free fatty acid content varied from 0.16 to 0.46 g.100 g-1 and the peroxides value levels from 0.35 to 1.80 meq.kg-1. The cholesterol content varied from 192.8 to 226.3 g.100 g-1 and the total lipid content varied from 81.8 to 86.8 g.100 g-1. The levels of saturated, monounsaturated, and polyunsaturated fatty acids varied from 43.86 to 52.74, from 21.65 to 23.34, and from 2.11 to 2.89 g.100 g-1, respectively. The conjugated linoleic acid (CLA) content varied from 0.56 to 0.86 g.100 g-1 and the levels of total trans isomer varied from 2.18 to 3.81 g.100 g-1.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 14
Author(s):  
Rita Brzezińska ◽  
Agata Górska ◽  
Kinga Gotowicka ◽  
Joanna Bryś ◽  
Ewa Ostrowska-Ligęza ◽  
...  

Recently, consumers’ awareness is becoming a crucial aspect driving the food industry to develop new products with high nutritional value. The oil industry explores the use of less well-known plant materials such as avocado fruit which is a rich source of bioactive compounds. The objective of this study was to assess the quality and oxidative stability of avocado pulp oils during a 2-month storage period. Two avocado varieties, Hass and Reed, were selected and oil extraction was performed with the use of hexane. The extent of oxidative deterioration and oil stability were tested by measuring the acid value and peroxide value. The PDSC method was applied to evaluate the oxidative induction time. The composition of fatty acids and their distribution in internal (sn-2) and external (sn-1 and sn-3) positions in triacylglycerols were also analyzed. The acid value and the peroxide value of fresh extracted avocado oils reached approximately 0.6 mg KOH g−1 fat and 5 meq O2 kg−1 fat, respectively. Generally, during avocado oil storage both the acid values and the peroxide values were in accordance with Codex Alimentarius requirements (the limit for acid value is 4 mg KOH g−1, while for peroxide value it is 15 meq O2 kg−1). The Hass avocado pulp oil was characterized by a higher value of the oxidative induction time, about 111 min, compared to the oil extracted from Reed avocado pulp (61 min). The GC analysis revealed that avocado pulp oil could be considered a source of monounsaturated fatty acids. The dominant fatty acid found in this group was oleic acid with a percentage share of above 60%. In accordance with the results of fatty acids distribution in triacylglycerol molecules, the main fatty acids in the sn-2 position were linoleic acid and oleic acid and their percentage share in this item was up to 59% and 34%, respectively. It was also noticed that after a 2-month storage period, the acid value and the peroxide value increased about 7-fold and 2-fold, the oxidative induction time decreased about 2-fold and the percentage shares of fatty acid groups changed. In conclusion, the results obtained in this research indicate that storage period has a significant impact on avocado pulp oil quality.


Author(s):  
Md. Delwar Hossain ◽  
Kamal Uddin Ahmed ◽  
Mst. Farhana Nazneen Chowdhury ◽  
Alak Barman ◽  
Arif Ahmed ◽  
...  

With a view to studying the qualitative features and the variations in fatty acid composition of 6 rapeseed (B. campestris and B. napus) and mustard (B. juncea) varieties, an experiment was conducted. Among these varieties, BARI Sarisha-14 presented the value of 168.4 which was recorded the highest. Both BARI Sarisha-11 and BARI Sarisha-14 was found with the highest iodine value of 39.44; and the highest amount of acid value was recorded from BARI Sarisha-11 (1.867). Gas-liquid chromatographic (GLC) method has been used to determine the composition of essential fatty acid in the seeds of Brassica spp. (L.). From the GLC analysis, it was found that erucic acid, oleic acid, linoleic acid and lenolenic acid were the prime fatty acids in all the varieties. Erucic acid was in the range of 41.11 – 51.28%, oleic acid was the highest both in BARI Sarisha-11 and BARI Sarisha- 13 contained (18.69%), while BARI Sarisha-9 contained the highest amount of the unsaturated linoleic (17.75%)  and linolenic (15.83%) acids. Moreover, palmitic acid, stearic acid and archidic acid were also present in small amount.


Author(s):  
D. Ivasenko ◽  
P. Bukhtiyarova ◽  
D. Antsiferov ◽  
Y. Frank

Analysis of fatty acid composition in liquid culture media after lipophilic bacterial strains cultivation was carried out. Pure cultures were earlierisolated from fat-containing wastes and cultivated on media with diverse fat sources. It was shown that microorganisms hydrolyze animal and milk fats to free fatty acids.


2006 ◽  
Vol 89 (3) ◽  
pp. 1004-1009 ◽  
Author(s):  
L. Wiking ◽  
J.H. Nielsen ◽  
A.-K. Båvius ◽  
A. Edvardsson ◽  
K. Svennersten-Sjaunja

1966 ◽  
Vol 122 (4) ◽  
pp. 1276-1279 ◽  
Author(s):  
J. J. Spitzer ◽  
H. Nakamura ◽  
M. Gold ◽  
H. Altschuler ◽  
M. Lieberson

Sign in / Sign up

Export Citation Format

Share Document