scholarly journals Modulation of T Regulatory and Dendritic Cell Phenotypes Following Ingestion of Bifidobacterium longum, AHCC® and Azithromycin in Healthy Individuals

Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2470
Author(s):  
Abeed H. Chowdhury ◽  
Miguel Cámara ◽  
Chandan Verma ◽  
Oleg Eremin ◽  
Anil D. Kulkarni ◽  
...  

The probiotic Bifidus BB536 (BB536), which contains Bifidobacterium longum, has been shown to have enhanced probiotic effects when given together with a standardized extract of cultured Lentinula edodes mycelia (AHCC®, Amino Up Co. Ltd., Sapporo, Japan). BB536 and AHCC® may modulate T cell and dendritic cell (DC) phenotypes, and cytokine profiles to favour anti-inflammatory responses following antibiotic ingestion. We tested the hypothesis that orally administered BB536 and/or AHCC®, results in modulation of immune effector cells with polarisation towards anti-inflammatory responses following antibiotic usage. Forty healthy male volunteers divided into 4 equal groups were randomised to receive either placebo, BB536, AHCC® or a combination for 12 days in a double-blind manner. After 7 days volunteers also received 250 mg azithromycin for 5 days. Cytokine profiles from purified CD3+ T cells stimulated with PDB-ionomycin were assessed. CD4+ CD25+ forkhead box P3 (Foxp3) expression and peripheral blood DC subsets were assessed prior to treatment and subsequently at 7 and 13 days. There was no difference in cytokine secretion from stimulated CD3+ T cells between treatment groups. Compared with baseline, Foxp3 expression (0.45 ± 0.1 vs. 1.3 ± 0.4; p = 0.002) and interferon-gamma/interleukin-4 (IFN-γ/IL-4) ratios were increased post-treatment in volunteers receiving BB536 (p = 0.031), although differences between groups were not significant. For volunteers receiving combination BB536 and AHCC®, there was an increase in myeloid dendritic cells (mDC) compared with plasmacytoid DC (pDC) counts (80% vs. 61%; p = 0.006) at post treatment time points. mDC2 phenotypes were more prevalent, compared with baseline, following combination treatment (0.16% vs. 0.05%; p = 0.002). Oral intake of AHCC® and BB536 may modulate T regulatory and DC phenotypes to favour anti-inflammatory responses following antibiotic usage.

2018 ◽  
Vol 315 (2) ◽  
pp. G231-G240 ◽  
Author(s):  
Thomas K. Hoang ◽  
Baokun He ◽  
Ting Wang ◽  
Dat Q. Tran ◽  
J. Marc Rhoads ◽  
...  

Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to reduce the incidence and severity of necrotizing enterocolitis (NEC). It is unclear if preventing NEC by LR 17938 is mediated by Toll-like receptor 2 (TLR2), which is known to mediate proinflammatory responses to bacterial cell wall components. NEC was induced in newborn TLR2−/− or wild-type (WT) mice by the combination of gavage-feeding cow milk-based formula and exposure to hypoxia and cold stress. Treatment groups were administered formula supplemented with LR 17938 or placebo (deMan-Rogosa-Sharpe media). We observed that LR 17938 significantly reduced the incidence of NEC and reduced the percentage of activated effector CD4+T cells, while increasing Foxp3+ regulatory T cells in the intestinal mucosa of WT mice with NEC, but not in TLR2−/− mice. Dendritic cell (DC) activation by LR 17938 was mediated by TLR2. The percentage of tolerogenic DC in the intestine of WT mice was increased by LR 17938 treatment during NEC, a finding not observed in TLR2−/− mice. Furthermore, gut levels of proinflammatory cytokines IL-1β and IFN-γ were decreased after treatment with LR 17938 in WT mice but not in TLR2−/− mice. In conclusion, the combined in vivo and in vitro findings suggest that TLR2 receptors are involved in DC recognition and DC-priming of T cells to protect against NEC after oral administration of LR 17938. Our studies further clarify a major mechanism of probiotic LR 17938 action in preventing NEC by showing that neonatal immune modulation of LR 17938 is mediated by a mechanism requiring TLR2. NEW & NOTEWORTHY Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to protect against necrotizing enterocolitis (NEC) in neonates and in neonatal animal models. The role of Toll-like receptor 2 (TLR2) as a sensor for gram-positive probiotics, activating downstream anti-inflammatory responses is unclear. Our current studies examined TLR2 −/− mice subjected to experimental NEC and demonstrated that the anti-inflammatory effects of LR 17938 are mediated via a mechanism requiring TLR2.


2019 ◽  
Vol 14 (4) ◽  
pp. 508-524 ◽  
Author(s):  
Heike Schmitt ◽  
Julia Ulmschneider ◽  
Ulrike Billmeier ◽  
Michael Vieth ◽  
Patrizio Scarozza ◽  
...  

Abstract Background and Aims The topically applied Toll-like receptor 9 [TLR9] agonist cobitolimod is a first-in-class DNA-based oligonucleotide with demonstrated therapeutic efficacy in clinical trials with ulcerative colitis [UC] patients. We here characterized its anti-inflammatory mechanism in UC. Methods Luminal cobitolimod administration was evaluated in an experimental dextran sodium sulfate [DSS]-induced colitis model. Cultured blood and mucosal cells from UC patients were treated with cobitolimod and analysed via microarray, quantitative real-time PCR, ELISA and flow cytometry. Intestinal slides of cobitolimod-treated UC patients were analysed by immunohistochemistry. Results Cobitolimod administration markedly suppressed experimental colitis activity, and microarray analyses demonstrated mucosal IL10 upregulation and suppression of IL17 signalling pathways. Cobitolimod treatment was associated with significant induction of mucosal IL10+Tr1 and Treg cells and suppression of Th17 cells. TLR9 knockout mice indicated that cobitolimod requires TLR9 signalling for IL10 induction. In UC patients, mucosal TLR9 levels correlated with severity of inflammation. Cobitolimod inhibited IL17A and IL17F, but increased IL10 and FoxP3 expression in cultured intestinal UC T cells. Cobitolimod-mediated suppression of intestinal IL17+T cells was abrogated by IL10 blockade. Furthermore, cobitolimod led to heightened IL10 production by wound healing macrophages. Immunohistochemistry in intestinal biopsies of cobitolimod-treated UC patients indicated increased presence of IL10+mononuclear and regulatory T cells, as well as reduction of IL17+cells. Conclusion Activation of TLR9 via cobitolimod might represent a novel therapeutic approach in UC, as it suppresses Th17 cells and induces anti-inflammatory IL10+macrophages and regulatory T cells, thereby modifying the dysregulated intestinal cytokine balance. Podcast This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast


2021 ◽  
Vol 7 (26) ◽  
pp. eabh3693
Author(s):  
Theresa M. Raimondo ◽  
David J. Mooney

Chronic inflammation contributes to the pathogenesis of all muscular dystrophies. Inflammatory T cells damage muscle, while regulatory T cells (Tregs) promote regeneration. We hypothesized that providing anti-inflammatory cytokines in dystrophic muscle would promote proregenerative immune phenotypes and improve function. Primary T cells from dystrophic (mdx) mice responded appropriately to inflammatory or suppressive cytokines. Subsequently, interleukin-4 (IL-4)– or IL-10–conjugated gold nanoparticles (PA4, PA10) were injected into chronically injured, aged, mdx muscle. PA4 and PA10 increased T cell recruitment, with PA4 doubling CD4+/CD8− T cells versus controls. Further, 50% of CD4+/CD8− T cells were immunosuppressive Tregs following PA4, versus 20% in controls. Concomitant with Treg recruitment, muscles exhibited increased fiber area and fourfold increases in contraction force and velocity versus controls. The ability of PA4 to shift immune responses, and improve dystrophic muscle function, suggests that immunomodulatory treatment may benefit many genetically diverse muscular dystrophies, all of which share inflammatory pathology.


2011 ◽  
Vol 208 (10) ◽  
pp. 2055-2067 ◽  
Author(s):  
Reiko Takahashi ◽  
Shuhei Nishimoto ◽  
Go Muto ◽  
Takashi Sekiya ◽  
Taiga Tamiya ◽  
...  

Regulatory T cells (Treg cells) maintain immune homeostasis by limiting inflammatory responses. SOCS1 (suppressor of cytokine signaling 1), a negative regulator of cytokine signaling, is necessary for the suppressor functions of Treg cells in vivo, yet detailed mechanisms remain to be clarified. We found that Socs1−/− Treg cells produced high levels of IFN-γ and rapidly lost Foxp3 when transferred into Rag2−/− mice or cultured in vitro, even though the CNS2 (conserved noncoding DNA sequence 2) in the Foxp3 enhancer region was fully demethylated. Socs1−/− Treg cells showed hyperactivation of STAT1 and STAT3. Because Foxp3 expression was stable and STAT1 activation was at normal levels in Ifnγ−/−Socs1−/− Treg cells, the restriction of IFN-γ–STAT1 signaling by SOCS1 is suggested to be necessary for stable Foxp3 expression. However, Ifnγ−/−Socs1−/− Treg cells had hyperactivated STAT3 and higher IL-17A (IL-17) production compared with Ifnγ−/−Socs1+/+ Treg cells and could not suppress colitis induced by naive T cells in Rag2−/− mice. In vitro experiments suggested that cytokines produced by Socs1−/− Treg cells and Ifnγ−/−Socs1−/− Treg cells modulated antigen-presenting cells for preferential Th1 and Th17 induction, respectively. We propose that SOCS1 plays important roles in Treg cell integrity and function by maintaining Foxp3 expression and by suppressing IFN-γ and IL-17 production driven by STAT1 and STAT3, respectively.


1993 ◽  
Vol 178 (6) ◽  
pp. 2123-2130 ◽  
Author(s):  
H Secrist ◽  
C J Chelen ◽  
Y Wen ◽  
J D Marshall ◽  
D T Umetsu

Allergen specific CD4+ T cell clones generated from allergic individuals have been shown to produce increased levels of the cytokine interleukin 4 (IL-4), compared to allergen specific clones generated from nonallergic individuals. This difference between CD4+ T cells from allergic and nonallergic individuals with regard to cytokine production in response to allergen is thought to be responsible for the development of allergic disease with increased IgE synthesis in atopic individuals. We examined the production of IL-4 in subjects with allergic rhinitis and in allergic individuals treated with allergen immunotherapy, a treatment which involves the subcutaneous administration of increasing doses of allergen and which is highly effective and beneficial for individuals with severe allergic rhinitis. We demonstrated that the quantity of IL-4 produced by allergen specific memory CD4+ T cells from allergic individuals could be considerably reduced by in vivo treatment with allergen (allergen immunotherapy). Immunotherapy reduced IL-4 production by allergen specific CD4+ T cells to levels observed with T cells from nonallergic subjects, or to levels induced with nonallergic antigens such as tetanus toxoid. In most cases the levels of IL-4 produced were inversely related to the length of time on immunotherapy. These observations indicate that immunotherapy accomplishes its clinical effects by reducing IL-4 synthesis in allergen specific CD4+ T cells. In addition, these observations indicate that the cytokine profiles of memory CD4+ T cells can indeed be altered by in vivo therapies. Thus, the cytokine profiles of memory CD4+ T cells are mutable, and are not fixed as had been suggested by studies of murine CD4+ memory T cells. Finally, treatment of allergic diseases with allergen immunotherapy may be a model for other diseases which may require therapies that alter inappropriate cytokine profiles of memory CD4+ T cells.


2020 ◽  
Vol 21 (5) ◽  
pp. 1780 ◽  
Author(s):  
Dmitry V. Chistyakov ◽  
Gleb E. Gavrish ◽  
Sergei V. Goriainov ◽  
Viktor V. Chistyakov ◽  
Alina A. Astakhova ◽  
...  

Functional phenotypes, which cells can acquire depending on the microenvironment, are currently the focus of investigations into new anti-inflammatory therapeutic approaches. Glial cells, microglia, and astrocytes are major participants in neuroinflammation, but their roles differ, as microglia are cells of mesodermal origin, while astrocytes are cells of ectodermal origin. The inflammatory phenotype of cells can be modulated by ω-6- and ω-3-polyunsaturated fatty acid-derived oxylipins, although data on changes in oxylipin profiles in different cell adaptations to pro- and anti-inflammatory stimuli are scarce. Our study aimed to compare UPLC-MS/MS-measured oxylipin profiles in various rat astrocyte adaptation states. We used cells treated for 24 h with lipopolysaccharide (LPS) for classical pro-inflammatory adaptation and with interleukin 4 (IL-4) or 10 (IL-10) for alternative anti-inflammatory adaptation, with the resulting phenotypes characterized by quantitative real-time PCR (RT-PCR). We also tested long-term, low-concentration LPS treatment (endotoxin treatment) as a model of astrocyte adaptations. The functional response of astrocytes was estimated by acute (4 h) LPS-induced cell reactivity, measured by gene expression markers and oxylipin synthesis. We discovered that, as well as gene markers, oxylipin profiles can serve as markers of pro- (A1-like) or anti-inflammatory (A2-like) adaptations. We observed predominant involvement of ω-6 polyunsaturated fatty acid (PUFA) and the cyclooxygenase branch for classical (LPS) pro-inflammatory adaptations and ω-3 PUFA and the lipoxygenase branch for alternative (IL-4) anti-inflammatory adaptations. Treatment with IL-4, but not IL-10, primes the ability of astrocytes to activate the innate immunity signaling pathways in response to LPS. Endotoxin-treated astrocytes provide an alternative anti-inflammatory adaptation, which makes cells less sensitive to acute LPS stimulation than the IL-4 induced adaptation. Taken together, the data reveal that oxylipin profiles associate with different states of polarization to generate a pro-inflammatory or anti-inflammatory phenotype. This association manifests itself both in native cells and in their responses to a pro-inflammatory stimulus.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jia Jia ◽  
Kai Zheng ◽  
Hong Shen ◽  
Jiangyi Yu ◽  
Ping Zhu ◽  
...  

Abstract Background The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is involved in immunological tolerance. Destruction of immunological tolerance by dendritic cell (DC)-mediated T cells is involved in the pathogenesis of ulcerative colitis (UC). Qingchang Huashi granule (QCHS) has been confirmed in the treatment of UC involved by inhibiting the activation of DCs. The aim of this study was to investigate the mechanism through which QCHS restores the Th17/Treg balance by modulating DCs in the treatment of UC. Methods The effects of QCHS on Th17 cells, Tregs and DCs were detected in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis model. Furthermore, we injected QCHS-treated DCs into colitis model to test whether QCHS modulates the Th17/Treg balance via DCs. Tregs and Th17 cells were analyzed by FACS. IL-10, IL-17, and Foxp3 were measured by ELISA, Western blot and qRT-PCR. Results Both QCHS and QCHS-treated DCs improved colonic histopathology, diminished Th17 cell differentiation and inhibited IL-17 production while promoting CD4+CD25+Foxp3+ Treg differentiation and augmenting IL-10 and Foxp3 expression in colitis mice. Additionally, QCHS reduced CD86 and MHC-II expression on DCs, decreased IL-12 production ex vivo and restored the Th17/Treg ratio in the colitis model. Conclusion The findings of this study indicate that QCHS ameliorates TNBS-induced colitis by restoring the DC-mediated Th17/Treg balance.


2012 ◽  
Vol 42 (6) ◽  
pp. 1436-1448 ◽  
Author(s):  
Ye Chen ◽  
Elizabeth Adams ◽  
Frederico S. Regateiro ◽  
David J. Vaux ◽  
Alexander G. Betz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document