scholarly journals Antiobesity Effects of Extract from Spergularia marina Griseb in Adipocytes and High-Fat Diet-Induced Obese Rats

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 336 ◽  
Author(s):  
Yong-Hyun Park ◽  
Jae-Joon Lee ◽  
Hee-Kyoung Son ◽  
Bok-Hee Kim ◽  
Jaemin Byun ◽  
...  

Obesity has recently risen and become a serious health concern in Korea according to the westernized diet and altered lifestyle. Hence, there is a growing interest in the supplementation of phytochemicals to find a safe and effective functional ingredient to treat obesity. Spergularia marina Griseb (SM) has traditionally been used as a natural herb against chronic diseases in Korea. In this study, we investigated the antiobesity effects of SM in vitro and in vivo. SM ethanol extract (SME) inhibited proliferation and differentiation in murine adipocytes and primary porcine pre-adipocytes in a dose-dependent manner. In the in vivo study, supplementation of SM powder (SMP) remarkably attenuated fat accumulation in HFD-induced obese rats. In addition, SMP supplementation improved lipid profiles in the serum and tissues of high-fat induced obese rats. Collectively, these data indicated that SME exhibited antiobesity effects by modulating adipogenesis and lipolysis. Furthermore, SMP could be developed as an obesity-induced metabolic syndrome treatment.

2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Dong Ryun Gu ◽  
Jin-Ki Hwang ◽  
Munkhsoyol Erkhembaatar ◽  
Kang-Beom Kwon ◽  
Min Seuk Kim ◽  
...  

Chrysanthemum zawadskii Herbichvar.latilobum Kitamura, known as “Gujulcho” in Korea, has been used in traditional medicine to treat various inflammatory diseases, including rheumatoid arthritis. However, these effects have not been tested on osteoclasts, the bone resorbing cells that regulate bone metabolism. Here, we investigated the effects ofC. zawadskiiHerbich var.latilobumKitamura ethanol extract (CZE) on osteoclast differentiation induced by treatment with the receptor activator of NF-κB ligand (RANKL). CZE inhibited osteoclast differentiation and formation in a dose-dependent manner. The inhibitory effect of CZE on osteoclastogenesis was due to the suppression of ERK activation and the ablation of RANKL-stimulated Ca2+-oscillation via the inactivation of PLCγ2, followed by the inhibition of CREB activation. These inhibitory effects of CZE resulted in a significant repression of c-Fos expression and a subsequent reduction of NFATc1, a key transcription factor for osteoclast differentiation, fusion, and activationin vitroandin vivo. These results indicate that CZE negatively regulates osteoclast differentiation and may be a therapeutic candidate for the treatment of various bone diseases, such as postmenopausal osteoporosis, rheumatoid arthritis, and periodontitis.


Foods ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 170 ◽  
Author(s):  
Wan-Sup Sim ◽  
Sun-Il Choi ◽  
Bong-Yeon Cho ◽  
Seung-Hyun Choi ◽  
Xionggao Han ◽  
...  

The antioxidant and anti-adipogenic activities of a mixture of Nelumbo nucifera L., Morus alba L., and Raphanus sativus were investigated and their anti-obesity activities were established in vitro and in vivo. Among the 26 different mixtures of extraction solvent and mixture ratios, ethanol extract mixture no. 1 (EM01) showed the highest antioxidant (α,α-Diphenyl-β-picrylhydrazyl, total phenolic contents) and anti-adipogenic (Oil-Red O staining) activities. EM01 inhibited lipid accumulation in 3T3-L1 adipocytes compared to quercetin-3-O-glucuronide. Furthermore, body, liver, and adipose tissue weights decreased in the high-fat diet (HFD)-EM01 group compared to in the high-fat diet control group (HFD-CTL). EM01 lowered blood glucose levels elevated by the HFD. Lipid profiles were improved following EM01 treatment. Serum adiponectin significantly increased, while leptin, insulin growth factor-1, non-esterified fatty acid, and glucose significantly decreased in the HFD-EM01 group. Adipogenesis and lipogenesis-related genes were suppressed, while fat oxidation-related genes increased following EM01 administration. Thus, EM01 may be a natural anti-obesity agent.


ISRN Obesity ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Peter D. Ray ◽  
Reid A. Maclellan ◽  
Jin He ◽  
Zhigang Liu ◽  
Jianguo Wu

Rapamycin (RAPA) is a clinical immunosuppressive agent first reported in the literature in 1975 after its discovery in a soil sample from the island of Rapa Nui. Aside from the well-documented effects of RAPA on cell division and immunologic response, the literature reveals it to have negative effects on adipocyte and osteocyte differentiation as well. Understanding of the molecular effects of RAPA on cell differentiation is fragmentary in regard to these cell lineages. In this paper, we examined a potential mechanism for RAPA’s effects on adipocyte differentiation in vitro and in vivo. The data point to a unique role of Rel A (p65)—a component of the NF-κB system—in mediating this event. In murine adipose derived stem cell cultures (muADSCs) from C57BL/6J mice, RAPA was found to selectively downregulate RelA/p65, mammalian target of rapamycin (mTOR), and do so in a dose-dependent manner. This implies a novel role for RelA in adipocyte biology. Intracellular lipid accumulation—as subjectively observed—was also decreased in muADSCs treated with RAPA. Mice treated with RAPA had reduced overall body weight and reduced size of both intraabdominal and subcutaneous fat pads. When treated with RAPA, mice fed a high fat diet did not develop obesity and were not different from their regular diet controls in terms of body weight. These results suggested that RAPA inhibits adipogenesis and lipogenesis of muADSCs resulting in a prevention of obesity in C57BL/6J mice. This inhibition is strong enough to negate the effects of a high fat diet and seems to act by downregulating the RelA/p65 mTOR signaling pathway—a key component of the NF-κB family.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haofeng Zheng ◽  
Yannan Zhang ◽  
Jiannan He ◽  
Zhe Yang ◽  
Rui Zhang ◽  
...  

Chronic kidney disease (CKD), which is associated with high morbidity, remains a worldwide health concern, while effective therapies remain limited. Hydroxychloroquine (HCQ), which mainly targets toll-like receptor-7 (TLR-7) and TLR-9, is associated with a lower risk of incident CKD. Taking into account that TLR-9 is involved in the development of renal fibrosis and serves as a potential therapy target for CKD, we investigated whether HCQ could attenuate CKD via TLR-9 signal pathway. The effects of HCQ on renal tubulointerstitial fibrosis were further explored using a mouse model of renal tubulointerstitial fibrosis after ischemia/reperfusion injury. Bone marrow-derived macrophages were isolated to explore the effects of HCQ in vitro. Judicious use of HCQ efficiently inhibited the activation of macrophages and MAPK signaling pathways, thereby attenuating renal fibrosis in vivo. In an in vitro model, results showed that HCQ promoted apoptosis of macrophages and inhibited activation of macrophages, especially M2 macrophages, in a dose-dependent manner. Because TLR-7 is not involved in the development of CKD post-injury, a TLR-9 knockout mouse was used to explore the mechanisms of HCQ. The effects of HCQ on renal fibrosis and macrophages decreased after depletion of TLR-9 in vivo and in vitro. Taken together, this study indicated that proper use of HCQ could be a new strategy for anti-fibrotic therapy and that TLR-9 could be a potential therapeutic target for CKD following acute kidney injury.


2021 ◽  
Vol 18 (10) ◽  
pp. 2109-2115
Author(s):  
Waqas Ahmad Shams ◽  
Gauhar Rehman ◽  
Samuel Okwudili Onoja ◽  
Abid Ali ◽  
Khurshaid Khan ◽  
...  

Purpose: To evaluate the in vitro antidiabetic, anti-inflammatory and antioxidant potential of the ethanol extract of Uromastyx hardwickii Skin (UHSEE). Methods: The in vitro effects of UHSEE at various concentrations (10 - 250 µg/mL) on the activities of ߙ-amylase, ߙ-glucosidase and glucose uptake by yeast cells were used to evaluate its antidiabetic potential. Nitric oxide (NO), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide inhibitory assay were employed to determine its antioxidant effects, while the anti-inflammatory effects were evaluated using human red blood cell (HRBC) membrane stabilization assay. Results: UHSEE inhibited ߙ-amylase and ߙ-glucosidase enzymes but increased glucose uptake by yeast cells in a concentration-dependent manner (p < 0.05). It also inhibited NO, DPPH, hydrogen peroxide and HRBC hemolysis in a concentration-dependent manner (p < 0.05). Conclusion: Uromastyx hardwickii skin exhibits promising good antidiabetic, antioxidant and antiinflammatory properties in vitro. However, its true potentials in this regard needs to be evaluted in vivo.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Chihiro Ito ◽  
Yoshiki Mukudai ◽  
Masakatsu Itose ◽  
Kosuke Kato ◽  
Hiromi Motohashi ◽  
...  

The tumor protein D (TPD) family consists of four members, TPD52, TPD53, TPD54, and TPD55. The physiological roles of these genes in normal tissues, including epidermal and mesenchymal tissues, have rarely been reported. Herein, we examined the expression of TPD52 and TPD54 genes in cartilage in vivo and in vitro and investigated their involvement in the proliferation and differentiation of chondrocytes in vitro. TPD52 and TPD54 were uniformly expressed in articular cartilage and trabecular bone and were scarcely expressed in the epiphyseal growth plate. In MC3T3E-1 cells, the expressions of TPD52 and TPD54 were increased in a differentiation-dependent manner. In contrast, their expressions were decreased in ATDC5 cells. In ATDC5 cells, overexpression of TPD52 decreased alkaline phosphatase (ALPase) activity, while knock-down of TPD52 showed little effect. In contrast, overexpression of TPD54 enhanced ALPase activity, Ca2+ deposition, and the expressions of type X collagen and ALPase genes, while knock-down of TPD54 reduced them. The results revealed that TPD52 inhibits and that TPD54 promotes the terminal differentiation of a chondrocyte cell line. As such, we report for the first time the important roles of TPD52 and TPD54, which work oppositely, in the terminal differentiation of chondrocytes during endochondral ossification.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Kumaraswamy Athesh ◽  
Rangaraju Sivasubramanian ◽  
Gnanasekaran Jothi ◽  
Pemiah Brindha

Abstract Background Obesity, reached epidemic proportions globally is often associated with life threatening comorbidities. The unavailability of safe and effective long term medications for obesity in modern pharmacotherapy forces the scientific community to explore the potential of Ayurvedic traditional healers as they are considered safe and effective. Objective To explore the anti-obesity potential of aqueous extract of aerial parts of Achyranthes aspera L. (AEAA), a traditional healer in high fat diet (HFD) induced obese rats. Methods AEAA was prepared and subjected to in-vitro pancreatic lipase inhibition assay and in-vivo anti-obesity studies. For in-vivo studies, HFD fed obese prone Wistar albino rats were divided into five experimental groups (Group II to VI): animals fed with standard pellet chow served as normal control (Group I) while, animals continued with HFD alone served as obese control (Group II); Group III, IV and V were administered AEAA at a dose of 100, 200 and 300 mg/kg b.w. respectively along with HFD; and animals administered orlistat (30 mg/kg bw) along with HFD served as standard control (Group VI). All the drugs were administered orally once a day for a period of 60 days. At the end of the experimental period various physical, biochemical and histopathological observations were made. Results In-vitro studies showed AEAA partially but not significantly inhibited the activity of pancreatic lipase. Data of in-vivo studies revealed, significant reduction in body weights, fat pad weights and organ weights upon AEAA treatment. Elevated levels of glucose, insulin, leptin, lipid profiles and antioxidant status were also brought back to normal. Conclusion The obtained results clearly suggested that AEAA possess pronounced anti-obesity potential.


2021 ◽  
Vol 14 (5) ◽  
pp. 419
Author(s):  
Rubén Martín-Escolano ◽  
Daniel Molina-Carreño ◽  
Daniel Plano ◽  
Socorro Espuelas ◽  
María J. Rosales ◽  
...  

Chagas disease is usually caused by tropical infection with the insect-transmitted protozoan Trypanosoma cruzi. Currently, Chagas disease is a major public health concern worldwide due to globalization, and there are no treatments neither vaccines because of the long-term nature of the disease and its complex pathology. Current treatments are limited to two obsolete drugs, benznidazole and nifurtimox, which lead to serious drawbacks. Taking into account the urgent need for strict research efforts to find new therapies, here, we describe the in vitro and in vivo trypanocidal activity of a library of selected forty-eight selenocyanate and diselenide derivatives that exhibited leishmanicidal properties. The inclusion of selenium, an essential trace element, was due to the well-known extensive pharmacological activities for selenium compounds including parasitic diseases as T. cruzi. Here we present compound 8 as a potential compound that exhibits a better profile than benznidazole both in vitro and in vivo. It shows a fast-acting behaviour that could be attributed to its mode of action: it acts in a mitochondrion-dependent manner, causing cell death by bioenergetic collapse. This finding provides a step forward for the development of a new antichagasic agent.


Author(s):  
Henshaw Uchechi Okoroiwu ◽  
Item Justin Atangwho ◽  
Emmanuel Kufre Uko ◽  
Okafor Ifeyinwa Maryann

This study was designed to investigate the effects of aqueous, ethanol and crude extracts of <em>Chromolaena odorata</em> leaf on haemostatic mechanism of wistar rats and its possible <em>in vitro</em> use in coagulation study. Fifty wistar rats of both sexes weighing between 140-180 g were sorted into 10 groups each fed via oral gavage once daily for 21 days. Sample collection was done by cardiac puncture. Bleeding and clotting times were performed using Duke’s and Ivy’s methods, respectively. The prothrombin time was performed using the Quick’s one stage method, while the partial thromboplastin time using kaolin was done using Macpherson and Hardity method using Giess diagnosis reagent. Significant results were observed in the bleeding and clotting times of the three extracts in a dose-dependent manner. The 300-mg/kg ethanol extract decreased the bleeding time more than the other two extracts. Only the ethanol 150 and 300 mg/mL showed <em>in vitro</em> activity. The study showed the <em>in vivo</em> haemostatic properties of <em>Chromolaena odorata</em> leaf extracts and its possible use in <em>in vitro</em> coagulation study.


Sign in / Sign up

Export Citation Format

Share Document