scholarly journals Viburnum opulus L.—A Review of Phytochemistry and Biological Effects

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3398
Author(s):  
Dominika Kajszczak ◽  
Małgorzata Zakłos-Szyda ◽  
Anna Podsędek

Viburnum opulus (VO) is a valuable decorative, medicinal, and food plant. This deciduous shrub is found in natural habitats in Europe, Russia, and some regions in North Africa and North Asia. The VO is traditionally used to treat aliments such as cough, colds, tuberculosis, rheumatic aches, ulcers, stomach, and kidney problems, among others. Many of the health-promoting properties of VO are associated with antioxidant activity, which has been demonstrated in both in vitro and in vivo studies. The results of in vitro studies show the antimicrobial potential of VO, especially against Gram-positive bacteria. In cell-based studies, VO demonstrated anti-inflammatory, anti-obesity, anti-diabetic, osteogenic, cardio-protective, and cytoprotective properties. The applicability of VO in the treatment of urinary tract diseases, endometriosis, and some cancers has been confirmed in in vivo studies. The health benefits of VO result from the presence of bioactive components such as phenolic compounds, vitamin C, carotenoids, iridoids, and essential oils. The aim of this review is to present an overview of the botanical characteristics, chemical compositions, including bioactive compounds, and pro-health properties of VO different morphological parts.

2020 ◽  
Vol 27 ◽  
Author(s):  
Tsun-Thai Chai ◽  
Kah-Yaw Ee ◽  
D. Thirumal Kumar ◽  
Fazilah Abdul Manan ◽  
Fai-Chu Wong

Abstract: Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.


Revista CERES ◽  
2014 ◽  
Vol 61 (suppl) ◽  
pp. 764-779 ◽  
Author(s):  
Lívia de Lacerda de Oliveira ◽  
Mariana Veras de Carvalho ◽  
Lauro Melo

Phenolic compounds have been extensively studied in recent years. The presence of these compounds in various foods has been associated with sensory and health promoting properties. These products from the secondary metabolism of plants act as defense mechanisms against environmental stress and attack by other organisms. They are divided into different classes according to their chemical structures. The objective of this study was to describe the different classes of phenolic compounds, the main food sources and factors of variation, besides methods for the identification and quantification commonly used to analyze these compounds. Moreover, the role of phenolic compounds in scavenging oxidative stress and the techniques of in vitro antioxidant evaluation are discussed. In vivo studies to evaluate the biological effects of these compounds and their impact on chronic disease prevention are presented as well. Finally, it was discussed the role of these compounds on the sensory quality of foods.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 777 ◽  
Author(s):  
Javad Sharifi-Rad ◽  
Farzad Kobarfard ◽  
Athar Ata ◽  
Seyed Abdulmajid Ayatollahi ◽  
Nafiseh Khosravi-Dehaghi ◽  
...  

Members of the Prosopis genus are native to America, Africa and Asia, and have long been used in traditional medicine. The Prosopis species most commonly used for medicinal purposes are P. africana, P. alba, P. cineraria, P. farcta, P. glandulosa, P. juliflora, P. nigra, P. ruscifolia and P. spicigera, which are highly effective in asthma, birth/postpartum pains, callouses, conjunctivitis, diabetes, diarrhea, expectorant, fever, flu, lactation, liver infection, malaria, otitis, pains, pediculosis, rheumatism, scabies, skin inflammations, spasm, stomach ache, bladder and pancreas stone removal. Flour, syrup, and beverages from Prosopis pods have also been potentially used for foods and food supplement formulation in many regions of the world. In addition, various in vitro and in vivo studies have revealed interesting antiplasmodial, antipyretic, anti-inflammatory, antimicrobial, anticancer, antidiabetic and wound healing effects. The phytochemical composition of Prosopis plants, namely their content of C-glycosyl flavones (such as schaftoside, isoschaftoside, vicenin II, vitexin and isovitexin) has been increasingly correlated with the observed biological effects. Thus, given the literature reports, Prosopis plants have positive impact on the human diet and general health. In this sense, the present review provides an in-depth overview of the literature data regarding Prosopis plants’ chemical composition, pharmacological and food applications, covering from pre-clinical data to upcoming clinical studies.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2600 ◽  
Author(s):  
Luna Ge ◽  
Yazhou Cui ◽  
Kai Cheng ◽  
Jinxiang Han

Isopsoralen (IPRN), one of the main effective ingredients in Psoralea corylifolia Linn, has a variety of biological effects, including antiosteoporotic effects. In vivo studies show that IPRN can increase bone strength and trabecular bone microstructure in a sex hormone deficiency-induced osteoporosis model. However, the mechanism underlying this osteogenic potential has not been investigated in detail. In the present study, we investigated the molecular mechanism of IPRN-induced osteogenesis in MC3T3-E1 cells. Isopsoralen promoted osteoblast differentiation and mineralization, increased calcium nodule levels and alkaline phosphatase (ALP) activity and upregulated osteoblast markers, including ALP, runt-related transcription factor 2 (RUNX2), and collagen type I alpha 1 chain (COL1A1). Furthermore, IPRN limited the nucleocytoplasmic shuttling of aryl hydrocarbon receptor (AhR) by directly binding to AhR. The AhR target gene cytochrome P450 family 1 subfamily A member 1 (CYP1A1) was also inhibited in vitro and in vivo. This effect was inhibited by the AhR agonists indole-3-carbinol (I3C) and 3-methylcholanthrene (3MC). Moreover, IPRN also increased estrogen receptor alpha (ERα) expression in an AhR-dependent manner. Taken together, these results suggest that IPRN acts as an AhR antagonist and promotes osteoblast differentiation via the AhR/ERα axis.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 596 ◽  
Author(s):  
María del Carmen Villegas-Aguilar ◽  
Álvaro Fernández-Ochoa ◽  
María de la Luz Cádiz-Gurrea ◽  
Sandra Pimentel-Moral ◽  
Jesús Lozano-Sánchez ◽  
...  

Dietary phenolic compounds are considered as bioactive compounds that have effects in different chronic disorders related to oxidative stress, inflammation process, or aging. These compounds, coming from a wide range of natural sources, have shown a pleiotropic behavior on key proteins that act as regulators. In this sense, this review aims to compile information on the effect exerted by the phenolic compounds and their metabolites on the main metabolic pathways involved in energy metabolism, inflammatory response, aging and their relationship with the biological properties reported in high prevalence chronic diseases. Numerous in vitro and in vivo studies have demonstrated their pleiotropic molecular mechanisms of action and these findings raise the possibility that phenolic compounds have a wide variety of roles in different targets.


2020 ◽  
Vol 9 ◽  
Author(s):  
Fellipe Lopes De Oliveira ◽  
Thaise Yanka Portes Arruda ◽  
Renan Da Silva Lima ◽  
Sabrina Neves Casarotti ◽  
Maressa Caldeira Morzelle

Pomegranate, a recognized source of phenolic compounds, has been associated with health-promoting benefits, mostly due to its antioxidant activity. Ellagic and gallic acids, anthocyanins, and ellagitannins are the main phenolics in pomegranate, showing antioxidant activity. For this reason, pomegranate has been used in foods, such as meat products, as an attempt to retard lipid oxidation and increase shelf-life. In recent years, in vitro, in vivo, and human studies reported the antioxidant activity of pomegranate, especially its peels, with reduced incidence of chronic diseases (e.g., cardiovascular ailments, cancer, neurodegenerative disease, type 2 diabetes, chronic kidney disease). This review aims to present the main antioxidant compounds on pomegranate and their biological effects, the antioxidant activity of pomegranate-based foods, the application of pomegranate as a natural antioxidant food additive, the role of pomegranate in the prevention and management of chronic diseases, as well as the trends and prospects regarding the application of pomegranate in innovative food and health.


2021 ◽  
Vol 16 (11) ◽  
pp. 1934578X2110550
Author(s):  
Fatih Demirci ◽  
Ayşe Esra Karadağ ◽  
Sevde Nur Biltekin ◽  
Betül Demirci

Mentha arvensis L., M. citrata L., and M. spicata L. (family Lamiaceae) essential oils, and their characteristic constituent, menthol, were evaluated in vitro for angiotensin converting enzyme 2 (ACE2) and 5-lipoxygenase (5-LOX) enzyme inhibitory activity. The chemical compositions of M. arvensis, M. citrata, and M. spicata essential oils were analysed both by GC-FID, and GC/MS; 82.0%, 38.1%, and 0.4% menthol were identified, respectively. M. spicata essential oil contained 88.2% carvone as its major component. The enzyme inhibitory activities of the essential oils were evaluated using a fluorometric multiplate based enzyme inhibition kit; the ACE2 inhibitions produced by M. arvensis, M. citrata, and M. spicata essential oils were 33%, 22%, and 73%, while the 5-LOX inhibitions were 84%, 79%, and 70%, respectively. In addition, menthol also showed remarkable ACE2 inhibition of 99.8%, whereas the 5-LOX inhibition was 79.9%. As a result, menthol and the three different mint essential oils may have antiviral potential applications against coronaviruses due to their ACE2 enzyme inhibition and anti-inflammatory features. However, further in vivo studies are needed to confirm the safety and efficacy.


2021 ◽  
pp. 22-25
Author(s):  
Miguel Salavert Lletí ◽  
◽  
Víctor García-Bustos ◽  
Laura Morata Ruiz ◽  
Marta Dafne Cabañero-Navalon

The most relevant information on the clinical uses of tedizolid from studies published in the last 18 months is presented in this brief review. The most important data indicate better tolerance and safety profile of long-term therapeutic regimes in off-label indications, such as osteoarticular infections and those caused by mycobacteria. Its lower risk of hazardous interactions compared to linezolid should be emphasized. Furthermore, tedizolid in its combination with rifampicin shows a more favourable way of acting as demonstrated in vitro and in vivo studies. A recent trial also opens the door for its potential use in nosocomial pneumonia caused by Gram-positive bacteria.


2016 ◽  
Vol 10 (2) ◽  
pp. 172-186
Author(s):  
Agus Sudibyo ◽  
Tiurlan F. Hutajulu

Morinda Citrifolia, L.  known as Noni or Mengkudu is planting belonging to the family of Rubiaceae. A number of major components have been identified in leaves, roots, fruits of Noni plant, such as scopoletin, octanoic acid, vitamin C, iridoid, terpenoids, alkaloids, anthraquinones, beta-sitosterol, carotene, vitamin A, flavone glycosides, alizarin, amino acids, acubin, austin, caproic acid, caprylic acid and putative procyonine. Its use as a botanical dietary supplement has grown tremendously in recent years. The results of epidemiological studies suggest that the Noni consumption may help prevent several chronic diseases, including cancer disease, cardiovascular disease, type 2 diabetes mellitus, heart disease, artherosclerosis, blood vessel problem, gastric ulcer, drug addiction, muscle ached and pein. Several studies have also demonstrated anti-inflammatory, antioxidant, antimicrobial, analgesic, and immunologicalactivity. Based on a toxicological assessment, Noni juice was considered as safe. Although, a large number of in vitro and to a certain extent, and in vivo studies demonstrated a range potentially beneficial effects, clinical information data are still lacking completely. Therefore, to what extent the information findings from experimental pharmacological studies is not complete at present, so this article reviews potential health benefits for consumptions, its biological effects and looking for a new informationthat needs to be explored in detail before a recommendation can be madeABSTRAKMorinda citrofolia, L (mengkudu) merupakan jenis tanaman yang termasuk dalam golongan Rubiaceadan buahnya dikenal dengan nama Noni atau mengkudu. Beberapa komponen utama dalam tanaman tersebut telah diidentifikasi, mulai dari bagian akar, daun, dan buah, seperti kandungan scopoletin, asam oktanoad, vitamin C, iridoid, terpenoid, alkaloid, anthraquinon, beta-sitosterol, karotene, vitamin A, flavon glikosida, alizarin, asam amino, acubin, austin, asam kaproat, asam kaprilat dan putativ prokseronin. Buah tersebut akhir-akhir ini telah sukses banyak dimanfaatkan sebagai diet suplemen. Hasil studi secara epidemiologi menyatakan bahwa konsumsi mengkudu dapat membantu mencegah beberapa penyakit kronis, seperti penyakit kanker, kardiovaskular, diabetes tipe 2, penyakit jantung, artherosklerosis, masalah pembuluh darah, pencernaan, dan sakit otot. Beberapa studi juga menunjukkan bahwa mengkudu dapat berfungsi sebagai anti inflamasi, antioksidan, antimikroba, analgesik, dan bersifat immunlogis.Berdasarkan kajian secara toksikologi, buah dan jus mengkudu dinyatakan aman untuk dikonsumsi.  Penelitian secara in vitro pada beberapa jenis penyakit tertentu sedang diperluas, dan penelitian secara in vivo menunjukkan bahwa mengkudu mempunyai rentang potensi pengaruh yang baik bagi kesehatan, meskipun data informasinya secara klinis kurang lengkap. Oleh karena itu, untuk mengetahui apa yang sudah ditemukan dari hasil penelitian secara farmalogis yang belum lengkapsaat ini, maka dalam tulisan ini membahas potensi keuntungan kesehatan bila dikonsumsi, pengaruh biologinya dan pencarian informasibaru yang  perlu dikaji lebih rinci sebelum rekomendasi ditetapkan.Kata kunci: Mengkudu (Morinda citrifolia, L), pangan fungsional, rempah medis. 


2020 ◽  
Vol 20 (11) ◽  
pp. 988-1000 ◽  
Author(s):  
Bellamkonda Bosebabu ◽  
Sri Pragnya Cheruku ◽  
Mallikarjuna Rao Chamallamudi ◽  
Madhavan Nampoothiri ◽  
Rekha R. Shenoy ◽  
...  

Sesame (Sesamum indicum L.) seeds have been authenticated for its medicinal value in both Chinese and Indian systems of medicine. Its numerous potential nutritional benefits are attributed to its main bioactive constituents, sesamol. As a result of those studies, several molecular mechanisms are emerging describing the pleiotropic biological effects of sesamol. This review summarized the most interesting in vitro and in vivo studies on the biological effects of sesamol. The present work summarises data available from Pubmed and Scopus database. Several molecular mechanisms have been elucidated describing the pleiotropic biological effects of sesamol. Its major therapeutic effects have been elicited in managing oxidative and inflammatory conditions, metabolic syndrome and mood disorders. Further, compelling evidence reflected the ability of sesamol in inhibiting proliferation of the inflammatory cell, prevention of invasion and angiogenesis via affecting multiple molecular targets and downstream mechanisms. Sesamol is a safe, non‐toxic chemical that mediates anti‐inflammatory effects by down‐regulating the transcription of inflammatory markers such as cytokines, redox status, protein kinases, and enzymes that promote inflammation. In addition, sesamol also induces apoptosis in cancer cells via mitochondrial and receptor‐mediated pathways, as well as activation of caspase cascades. In the present review, several pharmacological effects of sesamol are summarised namely, antioxidant, anti-cancer, neuroprotective, cardioprotective, anti-inflammatory, hypolipidemic, radioprotective, anti-aging, anti-ulcer, anti-dementia, anti-depressant, antiplatelet, anticonvulsant, anti-anxiolytic, wound healing, cosmetic (skin whitening), anti-microbial, matrix metalloproteinase (MMPs) inhibition, hepatoprotective activity and other biological effects. Here we have summarized the proposed mechanism behind these pharmacological effects.


Sign in / Sign up

Export Citation Format

Share Document