scholarly journals Modification of the Lipid Profile of the Initial Oral Biofilm In Situ Using Linseed Oil as Mouthwash

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 989
Author(s):  
Anna Kensche ◽  
Marco Reich ◽  
Christian Hannig ◽  
Klaus Kümmerer ◽  
Matthias Hannig

Lipids are of interest for the targeted modification of oral bioadhesion processes. Therefore, the sustainable effects of linseed oil on the composition and ultrastructure of the in situ pellicle were investigated. Unlike saliva, linseed oil contains linolenic acid (18:3), which served as a marker for lipid accumulation. Individual splints with bovine enamel slabs were worn by five subjects. After 1 min of pellicle formation, rinses were performed with linseed oil for 10 min, and the slabs’ oral exposure was continued for up to 2 or 8 h. Gas chromatography coupled with electron impact ionization mass spectrometry (GC-EI/MS) was used to characterize the fatty acid composition of the pellicle samples. Transmission electron microscopy was performed to analyze the ultrastructure. Extensive accumulation of linolenic acid was recorded in the samples of all subjects 2 h after the rinse and considerable amounts persisted after 8 h. The ultrastructure of the 2 h pellicle was less electron-dense and contained lipid vesicles when compared with controls. After 8 h, no apparent ultrastructural effects were visible. Linolenic acid is an excellent marker for the investigation of fatty acid accumulation in the pellicle. New preventive strategies could benefit from the accumulation of lipid components in the pellicle.

2017 ◽  
Vol 51 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Jasmin Kirsch ◽  
Christian Hannig ◽  
Sandra Pötschke ◽  
Sabine Basche ◽  
William H. Bowen ◽  
...  

Aim: The present study aimed to evaluate the impact of caries activity on the key enzymes and the ultrastructure of the in situ pellicle. Methods: Pellicle formation was performed on bovine enamel slabs. Intraoral exposure (3, 30, and 120 min) was accomplished by 14 caries-active (DMFS: 22.7 ± 12.1) and 13 caries-inactive (DMFS: 1.5 ± 1.8) individuals. The enzyme activities (lysozyme, peroxidase, α-amylase, glycosyltransferase [GTF]) in the in situ pellicle and resting saliva of all participants were analyzed directly after oral exposure. In addition, a simultaneous visualization of these enzymes, extracellular glucans, and adherent bacteria was carried out. Fluorescent patterns were analyzed with fluorescence labeling and 4′,6-diamidino-2-phenylindole/concanavalin A staining. In addition, the distribution of GTF B, C, and D and the ultrastructure of the pellicle were examined by gold immunolabeling and transmission electron microscopy with selected samples. Results: Enzyme activities of amylase, peroxidase, lysozyme, and GTF were detected on all enamel slabs in an active conformation. Neither exposure time nor caries activity had an impact on the enzyme activities. Gold immunolabeling indicated that the pellicle of caries-active subjects tends to more GTF D molecules. The pellicles of caries-inactive and -active individuals revealed a similar ultrastructural pattern. Conclusion: The enzyme activities as well as the pellicle's ultrastructure are of high similarity in caries-active and -inactive subjects. Thereby, oral exposure time has no significant influence. This reflects a high uniformity during the initial phase of bioadhesion (3-120 min) concerning enzymatic functions. However, there is a tendency towards more GTF D in caries-active individuals.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
A. Kensche ◽  
S. Pötschke ◽  
C. Hannig ◽  
G. Richter ◽  
W. Hoth-Hannig ◽  
...  

For the purpose of erosion prevention the present study aimed to compare the efficacy of two biomimetic products and a fluoride solution to optimize the protective properties of the pellicle. After 1 min ofin situpellicle formation on bovine enamel slabs, 8 subjects adopted CPP-ACP (GC Tooth Mousse), a mouthwash with hydroxyapatite microclusters (Biorepair), or a fluoride based mouthwash (elmex Kariesschutz) for 1 min each. Afterwards, samples were exposed in the oral cavity for 28 min. Native enamel slabs and slabs exposed to the oral cavity for 30 min without any rinse served as controls. After oral exposure, slabs were incubated in HCl (pH values 2, 2.3, and 3) for 120 s and kinetics of calcium and phosphate release were measured photometrically; representative samples were evaluated by SEM and TEM. The physiological pellicle reduced demineralization at all pH values; the protective effect was enhanced by fluoride. The biomimetic materials also reduced ion release but their effect was less pronounced. SEM indicated no layer formation after use of the different products. However, TEM confirmed the potential accumulation of mineral components at the pellicle surface. The tested products improve the protective properties of thein situpellicle but not as effectively as fluorides.


2016 ◽  
Vol 51 (1) ◽  
pp. 34-45 ◽  
Author(s):  
Susann Hertel ◽  
Sandra Pötschke ◽  
Sabine Basche ◽  
Judith Delius ◽  
Wiebke Hoth-Hannig ◽  
...  

Objectives: In the present in situ/ex vivo study the impact of tannic acid on the erosion-protective properties of the enamel pellicle was tested. Additionally, the antiadherent and antibacterial effects of tannic acid were evaluated. Methods: The pellicle was formed in situ on bovine enamel samples fixed on individual splints worn by 6 subjects. Following 1 min of pellicle formation the volunteers rinsed for 10 min with tannic acid. After further oral exposure for 19 min, 109 min, and 8 h overnight, respectively, slabs were incubated in HCl ex vivo (pH 2.0, 2.3, 3.0) over 120 s. Subsequently, kinetics of calcium and phosphate release were measured photometrically. Samples after a 1-min fluoride mouth rinse as well as enamel samples with and without a 30-min in situ pellicle served as controls. Antiadherent effects were evaluated after a 1-min rinse with tannic acid and oral exposure of the slabs overnight. DAPI (4′,6-diamidino-2-phenylindole) combined with concanavalin A staining and live/dead staining was used for fluorescence microscopic visualization and quantification of adherent bacteria and glucans. Modification of the pellicle's ultrastructure by tannic acid was evaluated by transmission electron microscopy (TEM). Results: Tannic acid significantly improved the erosion-protective properties of the pellicle in a pH-dependent manner. Bacterial adherence and glucan formation on enamel were significantly reduced after rinses with tannic acid as investigated by fluorescence microscopy. TEM imaging indicated that rinsing with tannic acid yielded a sustainable modification of the pellicle; it was distinctly more electron dense. Conclusion: Tannic acid offers an effective and sustainable approach for the prevention of caries and erosion.


2008 ◽  
Vol 15 (4) ◽  
pp. 402 ◽  
Author(s):  
M. NYKTER ◽  
H-R. KYMÄLÄINEN ◽  
F. GATES

In this review the quality properties of linseed oil for food uses are discussed as well as factors affecting this quality. Linseed oil has a favourable fatty acid composition with a high linolenic acid content. Linseed oil contains nearly 60% á-linolenic acid, compared with 25% for plant oils generally. The content of linolenic acid and omega-3 fatty acids is reported to be high in linseed grown in northern latitudes. The composition of fatty acids, especially unsaturated fatty acids, reported in different studies varies considerably for linseed oil. This variation depends mainly on differences in the examined varieties and industrial processing treatments. The fatty acid composition leads also to some problems, rancidity probably being the most challenging. Some information has been published concerning oxidation and taste, whereas only a few studies have focused on colour or microbiological quality. Rancidity negatively affects the taste and odour of the oil. There are available a few studies on effects of storage on composition of linseed oil. In general, storage and heat promote auto-oxidation of fats, as well as decrease the amounts of tocopherols and vitamin E in linseed oil. Several methods are available to promote the quality of the oil, including agronomic methods and methods of breeding as well as chemical, biotechnological and microbiological methods. Time of harvesting and weather conditions affect the quality and yield of the oil.;


1961 ◽  
Vol 41 (4) ◽  
pp. 814-817 ◽  
Author(s):  
W. G. McGregor ◽  
R. B. Carson

Iodine number and fatty acid composition of linseed oil from flax varieties grown in Western Canada are reported. Differences in iodine number and linolenic acid due to environment were greater than differences between varieties grown in the same location, but varieties tended to maintain their respective rank in regard to fatty acid composition within broad limits regardless of environment.


2020 ◽  
Author(s):  
Sascha Kempf ◽  
William Goode ◽  
Ralf Srama ◽  
Frank Postberg

<p>Our current understanding of the solar system’s micrometeoroid environment relies to a substantial extent on in-situ data acquired by impact ionization dust detectors such as Ulysses’ and Galileo’s DDS or Cassini’s CDA. Such detectors derive the mass and speed of striking dust particles from the properties and evolution of the plasma created upon impact. In particular, empirical evidence suggests that the impact speed is a function of the duration of impact charge delivery onto the target - the so-called plasma rise time. Often, this dependence has been attributed to secondary impacts of target and projectile ejecta.<span> </span></p><p>During recent years the capabilities of laboratory impact detectors have been significantly improved. In particular we now have ample evidence that secondary ejecta impacts are not responsible for the rise-time dependence. In fact the plasma rise-time is rather related to the ionization of target contaminants in the vicinity of the impact site.<span> </span></p><p>In this talk we present new experimental data obtained with state-of-the-art impact ionization mass spectrometers, which shed new light on what is really going on during a hypervelocity dust impact. We further discuss the implications for the interpretation of dust data obtained with previous generations of impact ionization detectors.</p>


2018 ◽  
Vol 18 (4) ◽  
pp. 991-1005 ◽  
Author(s):  
Joanna Stadnik ◽  
Anna Czech ◽  
Katarzyna Ognik

AbstractIn this study, the effect of the halved dosage of RRR-d-α-tocopherol (with respect to dl-α-to-copherol acetate) in diets containing oil rich in linoleic or α-linolenic acid (soybean or linseed oil, respectively) on the quality characteristics and fatty acid (FA) profile of turkey meat was studied. The experiment was conducted using 480 one-week-old turkey hens Big 6 line reared until the 16th week of life. The hens in Groups I and II received soybean oil added to their feed mixture, in Groups III and IV linseed oil was the source of supplementary fat. Turkeys in Groups I and III received dl-α-tocopherol acetate, whereas those in Groups II and IV RRR-d-α-tocopherol. No influence of dietary manipulation was observed on the chemical composition of turkey meat. The combined effect of the type of dietary fat and vitamin E source added to the feed was assessed using the color parameters. The addition of natural vitamin E to the feed mixture with linseed oil significantly increased the proportion of PUFA in breast muscle lipids compared with the group receiving soybean oil with this form of vitamin E. The inclusion of linseed oil increased the content of α-linolenic acid and total n-3 FA concentration in both muscles, compared with the diet that contained soybean oil. This modification of FA composition led to lower n-6/n-3 ratio in both the breast and thigh muscles regardless of the dietary vitamin E source. The use of natural form of tocopherol in diets containing linseed oil may help to improve the nutritional quality of turkey meat, especially by enhancing n-3 PUFA levels with no detrimental effect of lipid addition on the chemical composition and quality of meat.


10.5219/1031 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 150-156
Author(s):  
Markéta Borková ◽  
Miloslav Šulc ◽  
Alena Svitáková ◽  
Klára Novotná ◽  
Jana Smolová ◽  
...  

Goat milk and goat milk products are very valuable in human nutrition because of their favorable nutrient composition which can be further boosted by the addition of prebiotic fiber and probiotic bacteria. It has also been possible to change the fatty acid profile of goat milk through feed composition. The aim of this study was to increase the nutritional value of goat milk by producing a probiotic yoghurt drink made from milk with elevated omega-3 fatty acids and enriched with natural yacon prebiotics. Goat nutrition is one of the key factors how we can naturally increase omega-3 fatty acid content in goat milk. In our study, twenty four White Shorthair goats were divided into the control and experimental group which was supplemented with 55 mL of linseed oil per day for eight weeks to increase the monounsaturated and polyunsaturated fatty acid content in the milk. The yoghurt milk drinks were formulated from individual goat milk samples with added bifidobacteria and yacon prebiotics. Our results showed that goat feed supplementation with linseed oil indeed positively changed fatty acid profile of goat milk in which α-linolenic acid content increased while, at the same time, lauric, myristic and palmitic acid contents decreased. Also, yoghurt drinks enriched with yacon prebiotics have shown higher bifidobacteria counts compared to the control. 


Sign in / Sign up

Export Citation Format

Share Document