scholarly journals Pre-Sleep Casein Supplementation, Metabolism, and Appetite: A Systematic Review

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1872
Author(s):  
Justin Dela Cruz ◽  
David Kahan

Protein intake is an important factor for augmenting the response to resistance training in healthy individuals. Although food intake can help with anabolism during the day, the period of time during sleep is typically characterized by catabolism and other metabolic shifts. Research on the application of nighttime casein protein supplementation has introduced a new research paradigm related to protein timing. Pre-sleep casein supplementation has been attributed to improved adaptive response by skeletal muscle to resistance training through increases in muscle protein synthesis, muscle mass, and strength. However, it remains unclear what the effect of this nutritional strategy is on non-muscular parameters such as metabolism and appetite in both healthy and unhealthy populations. The purpose of this systematic review is to understand the effects of pre-sleep casein protein on energy expenditure, lipolysis, appetite, and food intake in both healthy and overweight or obese individuals. A systematic review following PRISMA guidelines was conducted in CINAHL, Cochrane, and SPORTDiscus during March 2021, and 11 studies met the inclusion criteria. A summary of the main findings shows limited to no effects on metabolism or appetite when ingesting 24–48 g of casein 30 min before sleep, but data are limited, and future research is needed to clarify the relationships observed.

Amino Acids ◽  
2021 ◽  
Vol 53 (10) ◽  
pp. 1493-1506
Author(s):  
Mishti Khatri ◽  
Robert J. Naughton ◽  
Tom Clifford ◽  
Liam D. Harper ◽  
Liam Corr

AbstractCollagen peptide supplementation (COL), in conjunction with exercise, may be beneficial for the management of degenerative bone and joint disorders. This is likely due to stimulatory effects of COL and exercise on the extracellular matrix of connective tissues, improving structure and load-bearing capabilities. This systematic review aims to evaluate the current literature available on the combined impact of COL and exercise. Following Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, a literature search of three electronic databases—PubMed, Web of Science and CINAHL—was conducted in June 2020. Fifteen randomised controlled trials were selected after screening 856 articles. The study populations included 12 studies in recreational athletes, 2 studies in elderly participants and 1 in untrained pre-menopausal women. Study outcomes were categorised into four topics: (i) joint pain and recovery from joint injuries, (ii) body composition, (iii) muscle soreness and recovery from exercise, and (iv) muscle protein synthesis (MPS) and collagen synthesis. The results indicated that COL is most beneficial in improving joint functionality and reducing joint pain. Certain improvements in body composition, strength and muscle recovery were present. Collagen synthesis rates were elevated with 15 g/day COL but did not have a significant impact on MPS when compared to isonitrogenous higher quality protein sources. Exact mechanisms for these adaptations are unclear, with future research using larger sample sizes, elite athletes, female participants and more precise outcome measures such as muscle biopsies and magnetic imagery.


2017 ◽  
Vol 27 (5) ◽  
pp. 448-457 ◽  
Author(s):  
Marina Fabre ◽  
Christophe Hausswirth ◽  
Eve Tiollier ◽  
Odeline Molle ◽  
Julien Louis ◽  
...  

While effects of the two classes of proteins found in milk (i.e., soluble proteins, including whey, and casein) on muscle protein synthesis have been well investigated after a single bout of resistance exercise (RE), the combined effects of these two proteins on the muscle responses to resistance training (RT) have not yet been investigated. Therefore, the aim of this study was to examine the effects of protein supplementation varying by the ratio between milk soluble proteins (fast-digested protein) and casein (slow-digested protein) on the muscle to a 9-week RT program. In a double-blind protocol, 31 resistance-trained men, were assigned to 3 groups receiving a drink containing 20g of protein comprising either 100% of fast protein (FP(100), n = 10), 50% of fast and 50% of slow proteins (FP(50), n = 11) or 20% of fast protein and 80% of casein (FP(20), n = 10) at the end of training bouts. Body composition (DXA), and maximal strength in dynamic and isometric were analyzed before and after RT. Moreover, blood plasma aminoacidemia kinetic after RE was measured. The results showed a higher leucine bioavailability after ingestion of FP(100) and FP(50) drinks, when compared with FP(20) (p< .05). However, the RT-induced changes in lean body mass (p < .01), dynamic (p < .01), and isometric muscle strength (p < .05) increased similarly in all experimental groups. To conclude, compared with the FP(20) group, the higher rise in plasma amino acids following the ingestion of FP(100) and FP(50) did not lead to higher muscle long-term adaptations.


2015 ◽  
Vol 173 (1) ◽  
pp. R25-R34 ◽  
Author(s):  
Jorn Trommelen ◽  
Bart B L Groen ◽  
Henrike M Hamer ◽  
Lisette C P G M de Groot ◽  
Luc J C van Loon

BackgroundThough it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis ratesin vivoin humans.ObjectiveTo assess whether exogenous insulin administration increases muscle protein synthesis rates in young and older adults.DesignA systematic review of clinical trials was performed and the presence or absence of an increase in muscle protein synthesis rate was reported for each individual study arm. In a stepwise manner, multiple models were constructed that excluded study arms based on the following conditions: model 1, concurrent hyperaminoacidemia; model 2, insulin-induced hypoaminoacidemia; model 3, supraphysiological insulin concentrations; and model 4, older, more insulin resistant, subjects.ConclusionsFrom the presented data in the current systematic review, we conclude that: i) exogenous insulin and amino acid administration effectively increase muscle protein synthesis, but this effect is attributed to the hyperaminoacidemia; ii) exogenous insulin administered systemically induces hypoaminoacidemia which obviates any insulin-stimulatory effect on muscle protein synthesis; iii) exogenous insulin resulting in supraphysiological insulin levels exceeding 50 000 pmol/l may effectively augment muscle protein synthesis; iv) exogenous insulin may have a diminished effect on muscle protein synthesis in older adults due to age-related anabolic resistance; and v) exogenous insulin administered systemically does not increase muscle protein synthesis in healthy, young adults.


1997 ◽  
Vol 82 (3) ◽  
pp. 807-810 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
Marcas M. Bamman ◽  
Robert R. Wolfe

Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, and Robert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl. Physiol. 82(3): 807–810, 1997.—Spaceflight results in a loss of lean body mass and muscular strength. A ground-based model for microgravity, bed rest, results in a loss of lean body mass due to a decrease in muscle protein synthesis (MPS). Resistance training is suggested as a proposed countermeasure for spaceflight-induced atrophy because it is known to increase both MPS and skeletal muscle strength. We therefore hypothesized that scheduled resistance training throughout bed rest would ameliorate the decrease in MPS. Two groups of healthy volunteers were studied during 14 days of simulated microgravity. One group adhered to strict bed rest (BR; n = 5), whereas a second group engaged in leg resistance exercise every other day throughout bed rest (BREx; n = 6). MPS was determined directly by the incorporation of infusedl-[ ring-13C6]phenylalanine into vastus lateralis protein. After 14 days of bed rest, MPS in the BREx group did not change and was significantly greater than in the BR group. Thus moderate-resistance exercise can counteract the decrease in MPS during bed rest.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 109-109
Author(s):  
Kristine Urschel

Abstract Protein has been recognized as an essential nutrient for animals for well over 100 years. Protein plays many important structural and metabolic roles, and some of its component amino acids have additional functions, including as regulatory molecules, as energy substrates and in the synthesis of other non-protein molecules. Skeletal muscle makes up approximately 50% of body weight in horses, with protein being the major non-water component. As an athletic species, the development and maintenance of muscle mass is of the utmost importance in horses. Because muscle mass is largely determined by the balance of rates of muscle protein synthesis and breakdown, understanding how these pathways are regulated and influenced by dietary protein and amino acid provision is essential. Historically, much research regarding protein nutrition in horses has focused on the protein digestibility of different feed ingredients, and the adequacy of different protein sources in supporting the growth and maintenance of horses. This presentation will focus on some of the current areas of active research relating to protein nutrition in horses: the activation of the signaling pathways that regulate muscle protein synthesis, amino acid supplementation in athletic horses, protein metabolism in aged and horses and those with insulin dysregulation, and amino acid and protein nutrition in predominantly forage-fed horses. There are many exciting opportunities for future research in the area of protein and amino acid nutrition in horses across the lifespan.


1993 ◽  
Vol 265 (2) ◽  
pp. R334-R340 ◽  
Author(s):  
T. A. Davis ◽  
M. L. Fiorotto ◽  
H. V. Nguyen ◽  
P. J. Reeds

To compare the sensitivity of muscle protein synthesis to food intake in neonatal and weaned rats, 5- and 16-day-old suckled rats and 28-day-old weaned rats were either fed, fasted for 8-10 h, or refed for 1-4 h after an 8-h fast. Protein synthesis was measured in vivo in soleus and plantaris muscles with a large dose of L-[4-3H]phenylalanine. In fed rats, fractional rates of protein synthesis (KS) decreased with age. Fasting decreased KS, and refeeding increased KS most in 5-day-old animals, less in 16-day-old rats, and least in 28-day-old rats. In 5-day-old rats, there were no differences in KS between soleus and plantaris muscles in the fed state and after fasting and refeeding; at 28 days, KS was higher in soleus than in plantaris in fed rats, and the soleus did not respond to fasting and refeeding. In rats at all three ages, the concentration of most plasma amino acids decreased during fasting; when 5-day-old rats were refed, plasma amino acid concentrations increased, but not to the levels in the fed state. Plasma insulin concentrations increased with age. Plasma insulin concentrations decreased more rapidly with fasting and increased more extensively with refeeding in 5-day-old rats than in older rats. These results suggest that muscle protein synthesis is more responsive to food intake in young suckled rats than in older suckled or weaned rats; this increased responsiveness is accompanied by greater changes in circulating insulin concentrations.


Author(s):  
Nina Zeng ◽  
Randall F. D'Souza ◽  
Caitlin L. Macrae ◽  
Vandre C. Figueiredo ◽  
Chantal A. Pileggi ◽  
...  

Disuse-induced muscle atrophy is accompanied by a blunted postprandial response of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Conflicting observations exist as to whether postabsorptive mTORC1 pathway activation is also blunted by disuse and plays a role in atrophy. It is unknown whether changes in habitual protein intake alters mTORC1 regulatory proteins and how they may contribute to the development of anabolic resistance. The primary objective of this study was to characterize the downstream responsiveness of skeletal muscle mTORC1 activation and its upstream regulatory factors, following 14 days of lower limb disuse in middle-aged men (45-60 years). The participants were further randomized to receive daily supplementation of 20g/d of protein (n=12; milk protein concentrate) or isocaloric carbohydrate placebo (n=13). Immobilization reduced postabsorptive skeletal muscle phosphorylation of the mTORC1 downstream targets, 4E-BP1, P70S6K and ribosomal protein S6 (RPS6), with phosphorylation of the latter two decreasing to a greater extent in the placebo, compared to the protein supplementation groups (37 ± 13 vs 14 ± 11% and 38 ± 20 vs 25 ± 8% respectively). Sestrin2 protein was also downregulated following immobilization irrespective of supplement group, despite a corresponding increase in its mRNA content. This decrease in Sestrin2 protein was negatively correlated with the immobilization induced change in the in-silico predicted regulator miR-23b-3p. No other measured upstream proteins were altered by immobilization or supplementation. Immobilization downregulated postabsorptive mTORC1 pathway activation and 20g/day of protein supplementation attenuated the decrease in phosphorylation of targets regulating muscle protein synthesis.


1995 ◽  
Vol 20 (4) ◽  
pp. 480-486 ◽  
Author(s):  
J. Duncan MacDougall ◽  
Martin J. Gibala ◽  
Mark A. Tarnopolsky ◽  
Jay R. MacDonald ◽  
Stephen A. Interisano ◽  
...  

It has been shown that muscle protein synthetic rate (MPS) is elevated in humans by 50% at 4 hrs following a bout of heavy resistance training, and by 109% at 24 hrs following training. This study further examined the time course for elevated muscle protein synthesis by examining its rate at 36 hrs following a training session. Six healthy young men performed 12 sets of 6- to 12-RM elbow flexion exercises with one arm while the opposite arm served as a control. MPS was calculated from the in vivo rate of incorporation of L-[1,2−13C2] leucine into biceps brachii of both arms using the primed constant infusion technique over 11 hrs. At an average time of 36 hrs postexercise, MPS in the exercised arm had returned to within 14% of the control arm value, the difference being nonsignificant. It is concluded that following a bout of heavy resistance training, MPS increases rapidly, is more than double at 24 hrs, and thereafter declines rapidly so that at 36 hrs it has almost returned to baseline. Key words: L-[−13C] leucine, muscle hypertrophy, training frequency, mass spectrometry


Sign in / Sign up

Export Citation Format

Share Document