scholarly journals Three-Dimensional Co-Culture System of Human Osteoblasts and Osteoclast Precursors from Osteoporotic Patients as an Innovative Model to Study the Role of Nutrients: Focus on Vitamin K2

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2823
Author(s):  
Domitilla Mandatori ◽  
Letizia Penolazzi ◽  
Letizia Pelusi ◽  
Elisabetta Lambertini ◽  
Francesca Michelucci ◽  
...  

Several natural compounds, such as vitamin K2, have been highlighted for their positive effects on bone metabolism. It has been proposed that skeletal disorders, such as osteoporosis, may benefit from vitamin K2-based therapies or its regular intake. However, further studies are needed to better clarify the effects of vitamin K2 in bone disorders. To this aim, we developed in vitro a three-dimensional (3D) cell culture system one step closer to the bone microenvironment based on co-culturing osteoblasts and osteoclasts precursors obtained from bone specimens and peripheral blood of the same osteoporotic patient, respectively. Such a 3-D co-culture system was more informative than the traditional 2-D cell cultures when responsiveness to vitamin K2 was analyzed, paving the way for data interpretation on single patients. Following this approach, the anabolic effects of vitamin K2 on the osteoblast counterpart were found to be correlated with bone turnover markers measured in osteoporotic patients’ sera. Overall, our data suggest that co-cultured osteoblasts and osteoclast precursors from the same osteoporotic patient may be suitable to generate an in vitro 3-D experimental model that potentially reflects the individual’s bone metabolism and may be useful to predict personal responsiveness to nutraceutical or drug molecules designed to positively affect bone health.

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2815
Author(s):  
Gang Ren ◽  
Xunzhen Zheng ◽  
Vandana Sharma ◽  
Joshua Letson ◽  
Andrea L. Nestor-Kalinoski ◽  
...  

Excessive myofibroblast activation, which leads to dysregulated collagen deposition and the stiffening of the extracellular matrix (ECM), plays pivotal roles in cancer initiation and progression. Cumulative evidence attests to the cancer-causing effects of a number of fibrogenic factors found in the environment, diseases and drugs. While identifying such factors largely depends on epidemiological studies, it would be of great importance to develop a robust in vitro method to demonstrate the causal relationship between fibrosis and cancer. Here, we tested whether our recently developed organotypic three-dimensional (3D) co-culture would be suitable for that purpose. This co-culture system utilizes the discontinuous ECM to separately culture mammary epithelia and fibroblasts in the discrete matrices to model the complexity of the mammary gland. We observed that pharmaceutical deprivation of nitric oxide (NO) in 3D co-cultures induced myofibroblast differentiation of the stroma as well as the occurrence of epithelial–mesenchymal transition (EMT) of the parenchyma. Such in vitro response to NO deprivation was unique to co-cultures and closely mimicked the phenotype of NO-depleted mammary glands exhibiting stromal desmoplasia and precancerous lesions undergoing EMT. These results suggest that this novel 3D co-culture system could be utilized in the deep mechanistic studies of the linkage between fibrosis and cancer.


2021 ◽  
Author(s):  
Mattia Saggioro ◽  
Stefania D'Agostino ◽  
Anna Gallo ◽  
Sara Crotti ◽  
Sara D'Aronco ◽  
...  

Three-dimensional (3D) culture systems are progressively getting attention given their potential in overcoming limitations of the classical 2D in vitro systems. Among different supports for 3D cell culture, hydrogels (HGs)...


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sun Young Lee ◽  
Sung Bum Park ◽  
Young Eun Kim ◽  
Hee Min Yoo ◽  
Jongki Hong ◽  
...  

AbstractThe demand for novel three-dimensional (3D) cell culture models of adipose tissue has been increasing, and proteomic investigations are important for determining the underlying causes of obesity, type II diabetes, and metabolic disorders. In this study, we performed global quantitative proteomic profiling of three 3D-cultured 3T3-L1 cells (preadipocytes, adipocytes and co-cultured adipocytes with macrophages) and their 2D-cultured counterparts using 2D-nanoLC-ESI-MS/MS with iTRAQ labelling. A total of 2,885 shared proteins from six types of adipose cells were identified and quantified in four replicates. Among them, 48 proteins involved in carbohydrate metabolism (e.g., PDHα, MDH1/2, FH) and the mitochondrial fatty acid beta oxidation pathway (e.g., VLCAD, ACADM, ECHDC1, ALDH6A1) were relatively up-regulated in the 3D co-culture model compared to those in 2D and 3D mono-cultured cells. Conversely, 12 proteins implicated in cellular component organisation (e.g., ANXA1, ANXA2) and the cell cycle (e.g., MCM family proteins) were down-regulated. These quantitative assessments showed that the 3D co-culture system of adipocytes and macrophages led to the development of insulin resistance, thereby providing a promising in vitro obesity model that is more equivalent to the in vivo conditions with respect to the mechanisms underpinning metabolic syndromes and the effect of new medical treatments for metabolic disorders.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1724
Author(s):  
Gry H. Dihazi ◽  
Marwa Eltoweissy ◽  
Olaf Jahn ◽  
Björn Tampe ◽  
Michael Zeisberg ◽  
...  

The secretome is an important mediator in the permanent process of reciprocity between cells and their environment. Components of secretome are involved in a large number of physiological mechanisms including differentiation, migration, and extracellular matrix modulation. Alteration in secretome composition may therefore trigger cell transformation, inflammation, and diseases. In the kidney, aberrant protein secretion plays a central role in cell activation and transition and in promoting renal fibrosis onset and progression. Using comparative proteomic analyses, we investigated in the present study the impact of cell transition on renal fibroblast cells secretome. Human renal cell lines were stimulated with profibrotic hormones and cytokines, and alterations in secretome were investigated using proteomic approaches. We identified protein signatures specific for the fibrotic phenotype and investigated the impact of modeling secretome proteins on extra cellular matrix accumulation. The secretion of peptidyl-prolyl cis-trans isomerase A (PPIA) was demonstrated to be associated with fibrosis phenotype. We showed that the in-vitro inhibition of PPIA with ciclosporin A (CsA) resulted in downregulation of PPIA and fibronectin (FN1) expression and significantly reduced their secretion. Knockdown studies of PPIA in a three-dimensional (3D) cell culture model significantly impaired the secretion and accumulation of the extracellular matrix (ECM), suggesting a positive therapeutic effect on renal fibrosis progression.


2020 ◽  
Vol 21 (18) ◽  
pp. 6806 ◽  
Author(s):  
Fabrizio Fontana ◽  
Michela Raimondi ◽  
Monica Marzagalli ◽  
Michele Sommariva ◽  
Nicoletta Gagliano ◽  
...  

In the last decade, three-dimensional (3D) cell culture technology has gained a lot of interest due to its ability to better recapitulate the in vivo organization and microenvironment of in vitro cultured cancer cells. In particular, 3D tumor models have demonstrated several different characteristics compared with traditional two-dimensional (2D) cultures and have provided an interesting link between the latter and animal experiments. Indeed, 3D cell cultures represent a useful platform for the identification of the biological features of cancer cells as well as for the screening of novel antitumor agents. The present review is aimed at summarizing the most common 3D cell culture methods and applications, with a focus on prostate cancer modeling and drug discovery.


Contraception ◽  
2016 ◽  
Vol 94 (2) ◽  
pp. 143-151 ◽  
Author(s):  
N.R. Boggavarapu ◽  
C. Berger ◽  
C. von Grothusen ◽  
J. Menezes ◽  
K. Gemzell-Danielsson ◽  
...  

2010 ◽  
Vol 638-642 ◽  
pp. 506-511 ◽  
Author(s):  
Claudia Bergemann ◽  
Ernst Dieter Klinkenberg ◽  
Frank Lüthen ◽  
Arne Weidmann ◽  
Regina Lange ◽  
...  

Porous tantalum (Ta) biomaterial is designed to function as a scaffold for osseous ingrowths and has found applications in orthopedics. Integration of this Ta foam into the neighboring bone requires that osteoprogenitor cells attach to the implant, grow into the scaffold, proliferate and differentiate to osteoblasts. The aim of the present study was to create an in vitro 3D model system to investigate the interaction of human osteoblasts with porous Ta in the depth of the corpus. To explore active migration of osteoblasts into the Ta scaffold two porous Ta discs (Zimmer, Poland) were horizontally fixed within a clamping ring. Thereby a 3D Ta module with 4 levels is generated, which is placed into a cell culture well with the appropriate medium. Osteoblast-like cells were seeded apical onto the Ta module and cultured for 7 days in humidified atmosphere. Active migration of cells into the scaffold was monitored by field emission scanning electron microscopy (FESEM) imaging of the apical, medial and basal layers. A problem in 3D cell culture is the nutrition of cells inside of the scaffold. Therefore morphological changes and differentiation of the cells in distinct layers were analyzed.


Sign in / Sign up

Export Citation Format

Share Document