scholarly journals Transcriptomic Analysis of Aggregatibacter actinomycetemcomitans Core and Accessory Genes in Different Growth Conditions

Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 282 ◽  
Author(s):  
Tjokro ◽  
Kittichotirat ◽  
Torittu ◽  
Ihalin ◽  
Bumgarner ◽  
...  

Aggregatibacter actinomycetemcomitans genome can be divided into an accessory gene pool (found in some but not all strains) and a core gene pool (found in all strains). The functions of the accessory genes (genomic islands and non-island accessory genes) are largely unknown. We hypothesize that accessory genes confer critical functions for A. actinomycetemcomitans in vivo. This study examined the expression patterns of accessory and core genes of A. actinomycetemcomitans in distinct growth conditions. We found similar expression patterns of island and non-island accessory genes, which were generally lower than the core genes in all growth conditions. The median expression levels of genomic islands were 29%–37% of the core genes in enriched medium but elevated to as high as 63% of the core genes in nutrient-limited media. Several putative virulence genes, including the cytolethal distending toxin operon, were found to be activated in nutrient-limited conditions. In conclusion, genomic islands and non-island accessory genes exhibited distinct patterns of expression from the core genes and may play a role in the survival of A. actinomycetemcomitans in nutrient-limited environments.

2019 ◽  
Vol 116 (20) ◽  
pp. 10072-10080 ◽  
Author(s):  
Bradley E. Poulsen ◽  
Rui Yang ◽  
Anne E. Clatworthy ◽  
Tiantian White ◽  
Sarah J. Osmulski ◽  
...  

Genomics offered the promise of transforming antibiotic discovery by revealing many new essential genes as good targets, but the results fell short of the promise. While numerous factors contributed to the disappointing yield, one factor was that essential genes for a bacterial species were often defined based on a single or limited number of strains grown under a single or limited number of in vitro laboratory conditions. In fact, the essentiality of a gene can depend on both the genetic background and growth condition. We thus developed a strategy for more rigorously defining the core essential genome of a bacterial species by studying many pathogen strains and growth conditions. We assessed how many strains must be examined to converge on a set of core essential genes for a species. We used transposon insertion sequencing (Tn-Seq) to define essential genes in nine strains ofPseudomonas aeruginosaon five different media and developed a statistical model,FiTnEss, to classify genes as essential versus nonessential across all strain–medium combinations. We defined a set of 321 core essential genes, representing 6.6% of the genome. We determined that analysis of four strains was typically sufficient inP. aeruginosato converge on a set of core essential genes likely to be essential across the species across a wide range of conditions relevant to in vivo infection, and thus to represent attractive targets for novel drug discovery.


2020 ◽  
Vol 8 (11) ◽  
pp. 1739
Author(s):  
David E. Whitworth ◽  
Allison Zwarycz

As prokaryotes diverge by evolution, essential ‘core’ genes required for conserved phenotypes are preferentially retained, while inessential ‘accessory’ genes are lost or diversify. We used the recently expanded number of myxobacterial genome sequences to investigate the conservation of their signalling proteins, focusing on two sister genera (Myxococcus and Corallococcus), and on a species within each genus (Myxococcus xanthus and Corallococcus exiguus). Four new C. exiguus genome sequences are also described here. Despite accessory genes accounting for substantial proportions of each myxobacterial genome, signalling proteins were found to be enriched in the core genome, with two-component system genes almost exclusively so. We also investigated the conservation of signalling proteins in three myxobacterial behaviours. The linear carotenogenesis pathway was entirely conserved, with no gene gain/loss observed. However, the modular fruiting body formation network was found to be evolutionarily plastic, with dispensable components in all modules (including components required for fruiting in the model myxobacterium M. xanthus DK1622). Quorum signalling (QS) is thought to be absent from most myxobacteria, however, they generally appear to be able to produce CAI-I (cholerae autoinducer-1), to sense other QS molecules, and to disrupt the QS of other organisms, potentially important abilities during predation of other prokaryotes.


2006 ◽  
Vol 188 (10) ◽  
pp. 3721-3725 ◽  
Author(s):  
Veerabadran Dheenadhayalan ◽  
Giovanni Delogu ◽  
Maurizio Sanguinetti ◽  
Giovanni Fadda ◽  
Michael J. Brennan

ABSTRACT Evaluation of expression of 16 PE_PGRS genes present in Mycobacterium tuberculosis under various growth conditions demonstrated constitutive expression of 7 genes, variable expression of 7 genes, and no expression of 2 genes. An inverse expression profile for genes PE_PGRS16 and PE_PGRS26 was observed to occur in macrophages and in mice infected with M. tuberculosis. Variable expression of PE_PGRS proteins could have implications for their role in the immunopathogenesis of tuberculosis.


2011 ◽  
Vol 193 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Shinichi Nakagawa ◽  
Takao Naganuma ◽  
Go Shioi ◽  
Tetsuro Hirose

Nuclei of higher organisms are well structured and have multiple, distinct nuclear compartments or nuclear bodies. Paraspeckles are recently identified mammal-specific nuclear bodies ubiquitously found in most cells cultured in vitro. To investigate the physiological role of paraspeckles, we examined the in vivo expression patterns of two long noncoding RNAs, NEAT1_1 and NEAT1_2, which are essential for the architectural integrity of nuclear bodies. Unexpectedly, these genes were only strongly expressed in a particular subpopulation of cells in adult mouse tissues, and prominent paraspeckle formation was observed only in the cells highly expressing NEAT1_2. To further investigate the cellular functions of paraspeckles, we created an animal model lacking NEAT1 by gene targeting. These knockout mice were viable and fertile under laboratory growth conditions, showing no apparent phenotypes except for the disappearance of paraspeckles. We propose that paraspeckles are nonessential, subpopulation-specific nuclear bodies formed secondary to particular environmental triggers.


2004 ◽  
Vol 186 (23) ◽  
pp. 8114-8122 ◽  
Author(s):  
Zaini Mohd-Zain ◽  
Sarah L. Turner ◽  
Ana M. Cerdeño-Tárraga ◽  
Andrew K. Lilley ◽  
Thomas J. Inzana ◽  
...  

ABSTRACT Transferable antibiotic resistance in Haemophilus influenzae was first detected in the early 1970s. After this, resistance spread rapidly worldwide and was shown to be transferred by a large 40- to 60-kb conjugative element. Bioinformatics analysis of the complete sequence of a typical H. influenzae conjugative resistance element, ICEHin1056, revealed the shared evolutionary origin of this element. ICEHin1056 has homology to 20 contiguous sequences in the National Center for Biotechnology Information database. Systematic comparison of these homologous sequences resulted in identification of a conserved syntenic genomic island consisting of up to 33 core genes in 16 β- and γ-Proteobacteria. These diverse genomic islands shared a common evolutionary origin, insert into tRNA genes, and have diverged widely, with G+C contents ranging from 40 to 70% and amino acid homologies as low as 20 to 25% for shared core genes. These core genes are likely to account for the conjugative transfer of the genomic islands and may even encode autonomous replication. Accessory gene clusters were nestled among the core genes and encode the following diverse major attributes: antibiotic, metal, and antiseptic resistance; degradation of chemicals; type IV secretion systems; two-component signaling systems; Vi antigen capsule synthesis; toxin production; and a wide range of metabolic functions. These related genomic islands include the following well-characterized structures: SPI-7, found in Salmonella enterica serovar Typhi; PAP1 or pKLC102, found in Pseudomonas aeruginosa; and the clc element, found in Pseudomonas sp. strain B13. This is the first report of a diverse family of related syntenic genomic islands with a deep evolutionary origin, and our findings challenge the view that genomic islands consist only of independently evolving modules.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yong Jun Goh ◽  
Rodolphe Barrangou ◽  
Todd R. Klaenhammer

ABSTRACT Lactobacillus acidophilus NCFM is a probiotic strain commonly used in dairy products and dietary supplements. Postgenome in vitro studies of NCFM thus far have linked potential key genotypes to its probiotic-relevant attributes, including gut survival, prebiotic utilization, host interactions, and immunomodulatory activities. To corroborate and extend beyond previous in vivo and in vitro functional studies, we employed a dual RNA sequencing (RNA-seq) transcriptomic approach to identify genes potentially driving the gut fitness and activities of L. acidophilus NCFM in vivo, and in parallel, examine the ileal transcriptional response of its murine hosts during monocolonization. Spatial expression profiling of NCFM from the ileum through the colon revealed a set of 134 core genes that were consistently overexpressed during gut transit. These in vivo core genes are predominantly involved in the metabolism of carbohydrates, amino acids, and nucleotides, along with mucus-binding proteins and adhesion factors, confirming their functionally important roles in nutrient acquisition and gut retention. Functional characterization of the highly expressed major S-layer-encoding gene established its indispensable role as a cell shape determinant and maintenance of cell surface integrity, essential for viability and probiotic attributes. Host colonization by L. acidophilus resulted in significant downregulation of several proinflammatory cytokines and tight junction proteins. Genes related to redox signaling, mucin glycosylation, and circadian rhythm modulation were induced, suggesting impacts on intestinal development and immune functions. Metagenomic analysis of NCFM populations postcolonization demonstrated the genomic stability of L. acidophilus as a gut transient and further established its safety as a probiotic and biotherapeutic delivery platform. IMPORTANCE To date, our basis for comprehending the probiotic mechanisms of Lactobacillus acidophilus, one of the most widely consumed probiotic microbes, was largely limited to in vitro functional genomic studies. Using a germfree murine colonization model, in vivo-based transcriptional studies provided the first view of how L. acidophilus survives in the mammalian gut environment, including gene expression patterns linked to survival, efficient nutrient acquisition, stress adaptation, and host interactions. Examination of the host ileal transcriptional response, the primary effector site of L. acidophilus, has also shed light into the mechanistic roles of this probiotic microbe in promoting anti-inflammatory responses, maintaining intestinal epithelial homeostasis and modulation of the circadian-metabolic axis in its host.


2020 ◽  
Author(s):  
Carsten Pohl ◽  
Fabiola Polli ◽  
Tabea Schütze ◽  
Annarita Viggiano ◽  
László Mózsik ◽  
...  

AbstractWe present a Penicillium rubens strain with an industrial background in which the four highly expressed biosynthetic gene clusters (BGC) required to produce penicillin, roquefortine, chrysogine and fungisporin were removed. This resulted in a minimal secondary metabolite background. Amino acid pools under steady-state growth conditions showed reduced levels of methionine and increased intracellular aromatic amino acids. Expression profiling of remaining BGC core genes and untargeted mass spectrometry did not identify products from uncharacterized BGCs. This platform strain was repurposed for expression of the recently identified polyketide calbistrin gene cluster and achieved high yields of decumbenone A, B and C. The penicillin BGC could be restored through in vivo assembly with eight DNA segments with short overlaps. Our study paves the way for fast combinatorial assembly and expression of biosynthetic pathways in a fungal strain with low endogenous secondary metabolite burden.


2018 ◽  
Author(s):  
Bradley E. Poulsen ◽  
Rui Yang ◽  
Anne E. Clatworthy ◽  
Tiantian White ◽  
Sarah J. Osmulski ◽  
...  

Genomics offered the promise of transforming antibiotic discovery by revealing many new essential genes as good targets, but the results fell short of the promise. It is becoming clear that a major limitation was that essential genes for a bacterial species were often defined based on a single or limited number of strains grown under a single or limited number ofin vitrolaboratory conditions. In fact, the essentiality of a gene can depend on both genetic background and growth condition. We thus developed a strategy for more rigorously defining the core essential genome of a bacterial species by studying many pathogen strains and growth conditions. We assessed how many strains must be examined to converge on a set of core essential genes for a species. We used transposon insertion sequencing (Tn-Seq) to define essential genes in nine strains ofPseudomonas aeruginosaon five different media and developed a novel statistical model,FiTnEss, to classify genes as essential versus non-essential across all strain-media combinations. We defined a set of 321 core essential genes, representing 6.6% of the genome. We determined that analysis of 4 strains was typically sufficient inP. aeruginosato converge on a set of core essential genes likely to be essential across the species across a wide range of conditions relevant toin vivoinfection, and thus to represent attractive targets for novel drug discovery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rodrigo Dorantes-Gilardi ◽  
Diana García-Cortés ◽  
Enrique Hernández-Lemus ◽  
Jesús Espinal-Enríquez

AbstractGene co-expression networks (GCNs) have been developed as relevant analytical tools for the study of the gene expression patterns behind complex phenotypes. Determining the association between structure and function in GCNs is a current challenge in biomedical research. Several structural differences between GCNs of breast cancer and healthy phenotypes have been reported. In a previous study, using co-expression multilayer networks, we have shown that there are abrupt differences in the connectivity patterns of the GCN of basal-like breast cancer between top co-expressed gene-pairs and the remaining gene-pairs. Here, we compared the top-100,000 interactions networks for the four breast cancer phenotypes (Luminal-A, Luminal-B, Her2+ and Basal), in terms of structural properties. For this purpose, we used the graph-theoretical k-core of a network (maximal sub-network with nodes of degree at least k). We developed a comprehensive analysis of the network k-core ($$k=30$$ k = 30 ) structures in cancer, and its relationship with biological functions. We found that in the Top-100,000-edges networks, the majority of interactions in breast cancer networks are intra-chromosome, meanwhile inter-chromosome interactions serve as connecting bridges between clusters. Moreover, core genes in the healthy network are strongly associated with processes such as metabolism and cell cycle. In breast cancer, only the core of Luminal A is related to those processes, and genes in its core are over-expressed. The intersection of the core nodes in all subtypes of cancer is composed only by genes in the chr8q24.3 region. This region has been observed to be highly amplified in several cancers before, and its appearance in the intersection of the four breast cancer k-cores, may suggest that local co-expression is a conserved phenomenon in cancer. Considering the many intricacies associated with these phenomena and the vast amount of research in epigenomic regulation which is currently undergoing, there is a need for further research on the epigenomic effects on the structure and function of gene co-expression networks in cancer.


2007 ◽  
Vol 30 (4) ◽  
pp. 77
Author(s):  
Y. Y. Chen ◽  
C. L. Hehr ◽  
K. Atkinson-Leadbeater ◽  
J. C. Hocking ◽  
S. McFarlane

Background: The growth cone interprets cues in its environment in order to reach its target. We want to identify molecules that regulate growth cone behaviour in the developing embryo. We investigated the role of A disintegrin and metalloproteinase 10 (ADAM10) in axon guidance in the developing visual system of African frog, Xenopus laevis. Methods: We first examined the expression patterns of adam10 mRNA by in situ hybridization. We then exposed the developing optic tract to an ADAM10 inhibitor, GI254023X, in vivo. Lastly, we inhibited ADAM10 function in diencephalic neuroepithelial cells (through which retinal ganglion cell (RGC) axons extend) or RGCs by electroporating or transfecting an ADAM10 dominant negative (dn-adam10). Results: We show that adam10 mRNA is expressed in the dorsal neuroepithelium over the time RGC axons extend towards their target, the optic tectum. Second, pharmacological inhibition of ADAM10 in an in vivo exposed brain preparation causes the failure of RGC axons to recognize their target at low concentrations (0.5, 1 μM), and the failure of the axons to make a caudal turn in the mid-diencephalon at higher concentration (5 μM). Thus, ADAM10 function is required for RGC axon guidance at two key guidance decisions. Finally, molecular inhibition of ADAM10 function by electroporating dn-adam10 in the brain neuroepithelium causes defects in RGC axon target recognition (57%) and/or defects in caudal turn (12%), as seen with the pharmacological inhibitor. In contrast, molecular inhibition of ADAM10 within the RGC axons has no effect. Conclusions: These data argue strongly that ADAM10 acts cell non-autonomously within the neuroepithelium to regulate the guidance of RGC axons. This study shows for the first time that a metalloproteinase acts in a cell non-autonomous fashion to direct vertebrate axon growth. It will provide important insights into candidate molecules that could be used to reform nerve connections if destroyed because of injury or disease. References Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a contact-mediated axon repellent. Science 2000; 289(5483):1360-5. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005; 123(2):291-304. Pan D, Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 1997; 90(2):271-80.


Sign in / Sign up

Export Citation Format

Share Document